期刊文献+

两个重要的恒等变换在解题中的作用

下载PDF
导出
摘要 我们知道,对于 n 个不为零的数(或式)f(1)、f(2)、f(3)、…、f(n),有f(n)=f(1)+[f(2)-f(1)]+…+[f(n)-f(n-1)]f(n)=f(1)·f(2)/f(1)·f(3)/f(2)…f(n)/f(n-1)在解有关数学题时,灵活地运用这两个简单的恒等变换,不仅能使问题的解法相当简捷,而且方法巧妙、新颖。下面通过举例加以说明。一、证明代数恒等式例1 试证1~3+2~3+3~3+…
作者 南山
出处 《中学数学教学》 1988年第6期14-17,共4页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部