期刊文献+

基于偏序拓扑图的帕金森病语音障碍分析方法 被引量:3

Dysphonic Analysis of Parkinson′s Disease Based on Partially Ordered Topological Graph
下载PDF
导出
摘要 从形式概念分析角度,提出将偏序拓扑图用于帕金森病语音障碍分析与诊断。首先,在属性拓扑的基础上,结合偏序结构表示,构造偏序拓扑图的形式背景表示方法,并利用偏序拓扑图进行概念本体计算,获得原始形式背景的层次化概念树结构。进而结合决策属性,对概念树进行着色与约简,获得约简概念树。根据约简概念树的偏序关系,可获得分析对象的概念分类结构。将该方法应用于帕金森病语音特征数据集进行概念提取,实验表明不但可以在概念层面分析帕金森病与语音特征的关系,同时可以作为诊断依据进行数据诊断。将该方法应用于多个帕金森病数据集(样本数分别为197、5 875、1 040、220)进行分类精度对比测试,表明基于偏序拓扑图的帕金森病语音障碍分析在不同的帕金森病语音数据集下的平均诊断精度达到76.64%,高于LDA(67.36%)、QDA(70.83%)、kNN(71.83%)、parzen窗(70.24%)、SVM(74.61%)等经典分类器的诊断精度,高出经典分类器SVM 2.72%,表明该方法能有效应用于帕金森病语音障碍分析。 In this paper, we proposed a novel dysphonic analysis method on Parkinson′s disease based on partially ordered topological graph from the view of formal concept analysis. Firstly, we constructed a representation(method) named partially ordered topological graph(POT graph) from attribute topology and attribute partially ordered graph, which gained the ability of concept searching and hierarchical concept tree structure representation. Coloring and briefing the concept tree could obtain the brief concept tree. The concept classification structure of the analysis object could be obtained according to the partial order relation of the brief concept tree. Applying the method to concept searching in Parkinson′s disease dataset, results showed that the POT graph could not only analyze the relationship between Parkinson′s disease and speech feature in the view of formal concept, but also be used as a diagnostic basis for data analysis. Results obtained from several Parkinson′s disease datasets(the numbers of sample are 197, 5875, 1040 and 220)showed that the average precision was 76.64% by POT graph. Compared with the classical classifier such as LDA(67.36%), QDA(70.83%), kNN(71.83%), Parzen window(70.24%), and SVM(74.61%), our result was higher than SVM 2.72%. In conclusion, the proposed method could be beneficial to the dysphonic analysis of Parkinson′s disease.
作者 张涛 蒋培培 李林 张晓娟 Zhang Tao;Jiang Peipei;Li Lin;Zhang Xiaojuan(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China;Kailuan Mental Health Center,Tangshan 063001,Hebei,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2019年第1期59-69,共11页 Chinese Journal of Biomedical Engineering
基金 河北省自然科学基金(F2015203013) 国家自然科学基金(61603327) 河北省青年拔尖人才支持计划
关键词 帕金森病 偏序拓扑图 形式概念分析 概念树 Parkinson′s disease partially ordered topological graph formal concept analysis concept tree
  • 相关文献

参考文献9

二级参考文献86

  • 1张涛,洪文学,路静.形式背景的属性树表示[J].系统工程理论与实践,2011,31(S2):197-202. 被引量:8
  • 2李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 3张振馨.神经系统疾病流行病学调查方法和问题[J].中华神经科杂志,2005,38(2):65-66. 被引量:5
  • 4Ben Fry.可视化数据[M].张羽,译.北京:电子工业出版社,2009.
  • 5Elzbieta PeRkalska,Robert PWDuin,Pavel Paelik.Prototype selection for dissimilarity-based classifiers[J].Pattern Recogmtion,2006,39(2):189-208.
  • 6约翰逊,威克思.实用多元统计分析[M].6版.陆璇,叶俊,译.北京:清华大学出版社,2008.
  • 7R O Duda, P E Hart, D G Stork. Pattern Classification[ M]. New York: Wiley ,2000.
  • 8G J McLachlan. Discriminant Analysis and Statistical Pattem Recognition[ M]. New York: Wiley Interscience, 2004.
  • 9V Vapnik. Statistical Learning Theory[ M ]. New York: Wiley Interscience, 1998.
  • 10Anil K Jain, Robert P W Duin, Jianchang Mao. Statistical pattern recognition: A review [ J ]. IEEE Transaction on Pattem Analysis and Machine Intelligence,2000,22( 1 ) :4 - 37.

共引文献38

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部