期刊文献+

周期激励浅拱的全局分岔 被引量:4

Global bifurcation of shallow arch with periodic excitation
下载PDF
导出
摘要 考虑1∶1内共振下周期激励浅拱的全局分岔,首先用平均法得到其平均系统,在此基础上运用规范型理论得到其约化系统,系统的特征方程出现非半单的两个零根和一对纯虚根的余维三情况 运用Kovacic和Wiggins的全局扰动方法,给出系统异宿轨道的分岔方式及其转迁集,作出相图。 The global bifurcations of a shallow arch with 1∶1 internal resonance are investigated. Based on the averaged equations of the system and by applying the normal form theory, the simplified system is obtained. The characteristic equation has two zeros and a pair of pure imaginary eigenvalues. Based on the global perturbation methods developed by Kovacic and Wiggins, the heteroclinic bifurcation, transition boundary and different phase portraits according to different regions are further obtained so as to have a better understanding of global behavior of the system.
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 2004年第1期85-88,共4页 Journal of Jiangsu University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK99109)
关键词 全局分岔 内共振 异宿轨 global bifurcation internal resonance heteroclinic orbits
  • 相关文献

参考文献8

  • 1[1]Tien Win-Min, Sri Namachchivaya N, Malhotra N.Nonlinear dynamics of a shallow arch under periodic excitation-Ⅱ 1∶1 internal resonance[J]. Int J Nonlinear Mech, 1994, 29: 367-386.
  • 2[2]Tien Win-Min, Sri Namachchivaya N, BajaiAnil K. Nonlinear dynamics of a shallow arch under periodic excitation-I. 1∶2 internal resonance[J]. Int J Nonlinear Mech, 1994, 29: 349-366.
  • 3[3]BI Qin-sheng, DAI Hui-hui. Analysis of nonlinear dyna-mics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance[J]. Journal of Sound and Vibration, 2000, 233: 557-571.
  • 4[6]Kovacic G, Wiggins S. Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation[J]. Physica D, 1992, 57: 185-225.
  • 5[7]Wiggins S. Global bifurcation and chaos-analytical methods[M]. New York: Berlin, Springer-Verlag, 1998.
  • 6[8]YU Pei, ZHANG Wei, BI Qin-sheng. Vibration analysis on a thin plate with the aid of computation of normal forms[J]. International Journal of Nonlinear Mechanics, 2001, 36: 597-627.
  • 7[9]ZHANG Wei, TANG Yun. Global dynamics of the cable under combined parametrical and external excita-tions[J]. International Journal of Nonlinear Mechanics, 2002, 37: 505-526.
  • 8[10]ZHANG Wei, LI Jing. Global analysis for a nonlinear vibration absorber with fast and slow modes[J]. International Journal of Bifurcation and Chaos, 2001: 2179-2194.

同被引文献47

  • 1CAI JianGuo,FENG Jian,CHEN Yao,HUANG LiFeng.In-plane elastic stability of fixed parabolic shallow arches[J].Science China(Technological Sciences),2009,52(3):596-602. 被引量:8
  • 2席丰,杨嘉陵.考虑初始几何缺陷时复合材料层合浅拱的动态“跳跃”[J].固体力学学报,1996,17(2):172-178. 被引量:9
  • 3Malhotra N, Namachchivaya N S. Chaotic dynamics of shallow arch structures under 1 : 2 resonance[J]. Journal of Engineering Mechanics, 1997, 123(6) : 612-619.
  • 4Malhotra N, Namachchivaya N S. Chaotic motion of shallow arch structures under 1 : 1 internal resonance[J]. Journal of Engineering Mechanics, 1997, 123(5) : 520-527.
  • 5Bi Q, Dai H H. Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance [J]. Journal of Sound and Vibration, 2000, 233 (4) : 557-571.
  • 6Lacarbonara W, Arafat H N, Nayfeh A H. Non-linear interactions in imperfect beams at vee- ring[J]. International Journal of Non-Linear Mechanics, 2005, 40(7): 987-1003.
  • 7Zhou L Q, Chen Y S, Chen F Q. Global bifurcation analysis and chaos of an arch structure with parametric and forced excitation[ J ]. Mechanics Research Communications, 2010, 37 (1) : 67-71.
  • 8Chen J S, Li Y T. Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load[ J]. International Journal of Solids and Structures, 2006, 43( 14/ 15) : 4220-4237.
  • 9Xu J X, Huang H, Zhang P Z, Zhou J Q. Dynamic stability of shallow arch with elastic sup- ports-application in the dynamic stability analysis of inner winding of transformer dturing short circuit [ J ]. International Journal of Non-Linear Mechanics, 2002, 37 (4/5) : 909-920.
  • 10Nayfeh A H, Mook D T. Nonlinear Oscillations [ M ]. New York. John Wiley & Sons Inc, 1979 : 320-385.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部