期刊文献+

一种基于脑MR图像的三层头模型自动分割方法

A method for automated segmentation of three-layer brain model from brain MR images
下载PDF
导出
摘要 在求解脑电图EEG及脑磁图MEG正问题的过程中,常需要对人体组织中介电常数差距大的地方进行分层建模,以便更加准确的计算其传导矩阵。在人体脑部的各个组织中,颅骨和周围脑组织的介电常数差别尤其大。如何从脑MR图像中自动、准确地分割出颅骨部分,成为精确计算MEG/EEG正向传导矩阵的关键问题。而在磁共振图像(MRI)中,虽然软组织能被很清晰的成像,但颅骨却因为缺少氢而在图像中成像模糊,用传统的分割算法很难自动分割出准确的结果。为解决上述问题,本文提出一种结合脑组织平滑的先验信息和基于形变的曲面演化自动分割算法,来分割脑MR图像中的颅骨部分。再利用基于水平集的活动轮廓方法提取出头皮组织,进而构建出EEG及MEG正问题计算所需的三层真实头模型。我们将自动分割结果与手动分割结果进行了比较,证明了本文方法的有效性。 In the process of solving EEG / MEG forward problem,it is essential to build a multi-layer brain model which distinguishes different tissues,so as to calculate a more accurate lead field matrix. The skull and surrounding tissues are different in human brain. How to segment skull from MR images automatically and accurately is a key problem for calculating the MEG / EEG lead field matrix. Soft tissues are very clear in MR image,but the intensity of skull is uncertain due to the shortage of hydrogen in the skull tissue,consequently it is difficult to segment skull in MR image using traditional segmentation algorithm. In order to solve this problem,a segmentation algorithm in combination with deformable triangular surface with a prior information of the smoothness of brain tissues was proposed to segment the skull from MR images. Furthermore,through using level-set-based active contour method to extract the head skin,a three-layer realistic head model for calculating EEG and MEG forward problem was constructed. The experiment comparing the results of automated segmentation with that of manual segmentation proves the validity of our proposed method.
出处 《中国体视学与图像分析》 2015年第3期227-234,共8页 Chinese Journal of Stereology and Image Analysis
基金 中国科学院百人计划项目 国家自然科学基金(61301042) 国家863计划(2015AA020514) 江苏省自然科学基金(BK2012189)
关键词 颅骨提取 C-V模型 形变曲面 有限元模型 MR影像 EEG MEG skull extraction C-V model deformable surface finite element model MR image EEG MEG
  • 相关文献

参考文献10

  • 1Scherrer Benoit,Forbes Florence,Garbay Catherine,Dojat Michel.Distributed local MRF models for tissue and structure brain segmentation. IEEE Transactions on Medical Imaging . 2009
  • 2Ghadimi S,Abrishami-Moghaddam H,Kazemi K,Grebe R,Goundry-Jouet C,Wallois F.Segmentation of scalp and skull in neonatal MR images using probabilistic atlas and level set method. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference . 2009
  • 3Peng, Li,Cheng, Jin,Jin, Lu.The unique determination of the primary current by MEG and EEG. Physics in Medicine and Biology . 2006
  • 4Moritz Dannhauer,Benjamin Lanfer,Carsten H. Wolters.Modeling of the Human Skull in EEG Source Analysis. Human Brain Mapping . 2011
  • 5Dogdas Belma,Shattuck David W,Leahy Richard M.Segmentation of skull and scalp in 3-D human MRI using mathematical morphology. Human Brain Mapping . 2005
  • 6Xu Chenyang,Snakes Jerry.Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing . 1998
  • 7Smith,SM.Fast robust automated brain extraction. Human Brain Mapping . 2002
  • 8Adhikari S K,Sudip K,Jamuna K,et al.Conditional spatial fuzzy c-means clustering algorithm with application in MRI image segmentation. Advances in Intelligent Systems and Computing . 2015
  • 9Sjolund J,Jarlideni A E,Andersson M,et al.Skull segmentation in MRI by a support vector machine combining local and global features. Proceedings of 22ndInternational Conference on Pattern Recognition (ICPR 2014) . 2014
  • 10Haueisen J,Lau S,Flemming L,et al.Influence of volume conductor modeling on source reconstruction in magnetoencephalography and electroencephalography. 2014 XXXIthURSI General Assembly and Scientific Symposium (URSI GASS) . 2014

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部