期刊文献+

一道竞赛题的简捷解法

下载PDF
导出
摘要 问题:已知f(x,y)=f(x+y),x、y∈R,且f(7)=7,求f(1986)。分析:给出的x、y∈R,从题设和题求看,只需x、y∈N就够了。这是因为f(xy)=f[(xy)·1]=f(xy+1),故有解:设xy=a(a∈N),∵f(xy)=f(x+y),∴f(a)=f(a·1)=f(a+1)。这就是说,对于任意自然数a,相邻两个自然数的函数值相等,亦即所有自然数的函数值相等.∵f(7)=7,∴f(1986)=7。
作者 杨昌吉
机构地区 山西柳林二中
出处 《中学教研(数学版)》 1988年第Z1期49-49,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部