期刊文献+

Ti6Al4V合金上TiO_2-CaP纳米薄膜的简易水热合成(英文)

Facile hydrothermal synthesis of TiO_2-Ca P nano-films on Ti6Al4V alloy
下载PDF
导出
摘要 采用高浓度Ca3(PO4)2、CaH PO4和Ca(H2PO4)2溶液对Ti6Al4V合金进行水热处理,以进行生物活性表面改性。经过处理的试样表面覆盖的薄膜由尺寸为60~240 nm的纳米颗粒组成。这种薄膜也能在电子束熔融技术制备的Ti6Al4V支架上生长。X射线光电子能谱分析表明,试样表面钛元素以TiO2形式存在,钙和磷元素以磷酸钙形式存在。X射线衍射和拉曼光谱分析表明,试样表面层由锐钛矿TiO2和羟基磷灰石组成。在无钙Hank’s平衡盐液中的动电位极化实验表明,水热处理试样的耐蚀性比抛光试样的显著提高。本研究提供了易于操作、处理温度低、腐蚀性低的生物活性表面改性方法,此方法可用于生物医用多孔Ti6Al4V合金的表面改性。 Ti6Al4V alloy was subjected to hydrothermal treatment in the concentrated Ca3(PO4)2, Ca HPO4 and Ca(H2PO4)2 solutions for bioactive surface modification. The treated samples are covered by films composed of nano-particles with the size of 60-240 nm. Such film can also be grown on the strut surface of a Ti6Al4 V scaffold prepared by electron beam melting(EBM) technology. XPS analysis indicates that Ti element on the surface presents as TiO2, and Ca and P elements are in the form of calcium phosphate. XRD and Raman analyses show that the surface layer is composed of anatase TiO2 and hydroxyapatite. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the treated sample has markedly improved corrosion resistance compared with the polished sample. The present work provides a bioactive surface modification method that is easily-operated, low-temperature, less corrosion, and applicable to porous Ti6Al4 V alloy for biomedical applications.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1122-1127,共6页 中国有色金属学报(英文版)
基金 Projects(xjj2011096,CHD2011JC001)supported by the Fundamental Research Fund for the Central Universities,China Projects(50901058,51374174)supported by the National Natural Science Foundation of China Project(2013JZ015)supported by the Science and Technology Program of Shaanxi Province,China
关键词 TIO2 磷酸钙 水热处理 腐蚀 titanium TiO2 calcium phosphate hydrothermal treatment corrosion
  • 相关文献

参考文献17

  • 1Mechanical properties of porous titanium with different distributions of pore size[J].Transactions of Nonferrous Metals Society of China,2013,23(8):2317-2322. 被引量:11
  • 2Xiang Li,Lin Wang,Xiaoming Yu,Yafei Feng,Chengtao Wang,Ke Yang,Daniel Su.Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation[J]. Materials Science & Engineering C . 2013 (5)
  • 3Saeed Saber-Samandari,Kadhim Alamara,Samaneh Saber-Samandari.Calcium phosphate coatings: Morphology, micro-structure and mechanical properties[J]. Ceramics International . 2013
  • 4侯乐干,李莉,郑玉峰.球磨时间对多孔Ti-3Ag合金及其磷灰石诱导能力的影响(英文)[J].Transactions of Nonferrous Metals Society of China,2013,23(5):1356-1366. 被引量:3
  • 5Xu-bin SU,Yong-qiang YANG,Peng YU,Jian-feng SUN.Development of porous medical implant scaffolds via laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China . 2012
  • 6Xingling Shi,Masaharu Nakagawa,Giichiro Kawachi,Lingli Xu,Kunio Ishikawa.Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses[J]. Journal of Materials Science: Materials in Medicine . 2012 (5)
  • 7Xiao-Bo Chen,Yun-Cang Li,Johan Du Plessis,Peter D. Hodgson,Cui’e Wen.Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications[J]. Acta Biomaterialia . 2009 (5)
  • 8J.G. Lin,Y.C. Li,C.S. Wong,P.D. Hodgson,C.E. Wen.Degradation of the strength of porous titanium after alkali and heat treatment[J]. Journal of Alloys and Compounds . 2009 (1)
  • 9Jianyu Xiong,Yuncang Li,Xiaojian Wang,Peter Hodgson,Cui’e Wen.Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti–18Nb–4Sn alloy for biomedical applications[J]. Acta Biomaterialia . 2008 (6)
  • 10C.Y. Zheng,S.J. Li,X.J. Tao,Y.L. Hao,R. Yang.Surface modification of Ti–Nb–Zr–Sn alloy by thermal and hydrothermal treatments[J]. Materials Science & Engineering C . 2008 (4)

二级参考文献18

  • 1LONG M, RACK H J. Titanium alloys in total joint replacement-A materials science perspective [J]. Biomaterials, 1998, 19:1621-39.
  • 2OH I H, NOMURA N, MASAHASHI N, HANADA S. Mechanical properties of porous titanium compacts prepared by powder sintering [J]. Scripta Materialia, 2003, 49: 197-202.
  • 3NOMURA N, KOHAMA T, OH I H, HANADA S, CHIBA A, KANEHIRA M, SASAKI K. Mechanical properties of porous Ti-15Mo-5Zr-3AI compacts prepared by powder sintering [J]. Materials Science and Engineering C, 2005, 25: 330-335.
  • 4KRISHNA B V, BOSE S, BANDYOPADHYAY A. Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomaterialia, 2007, 3: 997-1006.
  • 5KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26:5474-5491.
  • 6ITALA A I, YLANEN H O, EKHOLM C, KARLSSON K H, ARO H T. Pore diameter of more than 100 gin is not requisite for bone ingrowth in rabbits [J]. Journal of Biomedical Materials Research, 2001, 58: 679-683.
  • 7WEN C E, MABUCHI M, YAMADA Y, SHIMOJIMA K, CHINO Y, ASAHINA T. Processing of biocompatible porous Ti and Mg [J]. Scripta Materialia, 2001, 45: 1147-1153.
  • 8TAKEMOTO M, FUJIBAYASHI S, NEO M, SUZUKI J, KOKUBO T, NAKAMURA T. Mechanical properties and osteoconductivity of porous bioactive titanium [J]. Biomaterials, 2005, 26: 6014-6023.
  • 9PARTHASARATHY J, STARLY B, RAMAN S, CHRISTENSEN A. Mechanical evaluation of porous titanium (Ti6A14V) structures with electron beam melting (EBM) [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3: 249-259.
  • 10CHEN L J, LI T, LI Y M, HE H, HU Y H. Porous titanium implants fabricated by metal injection molding [J]. Transactions of Nonferrous Metals Society of China, 2009, 19:1174-1179.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部