摘要
Ti6Al4V alloy was subjected to hydrothermal treatment in the concentrated Ca3(PO4)2, Ca HPO4 and Ca(H2PO4)2 solutions for bioactive surface modification. The treated samples are covered by films composed of nano-particles with the size of 60-240 nm. Such film can also be grown on the strut surface of a Ti6Al4 V scaffold prepared by electron beam melting(EBM) technology. XPS analysis indicates that Ti element on the surface presents as TiO2, and Ca and P elements are in the form of calcium phosphate. XRD and Raman analyses show that the surface layer is composed of anatase TiO2 and hydroxyapatite. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the treated sample has markedly improved corrosion resistance compared with the polished sample. The present work provides a bioactive surface modification method that is easily-operated, low-temperature, less corrosion, and applicable to porous Ti6Al4 V alloy for biomedical applications.
采用高浓度Ca3(PO4)2、CaH PO4和Ca(H2PO4)2溶液对Ti6Al4V合金进行水热处理,以进行生物活性表面改性。经过处理的试样表面覆盖的薄膜由尺寸为60~240 nm的纳米颗粒组成。这种薄膜也能在电子束熔融技术制备的Ti6Al4V支架上生长。X射线光电子能谱分析表明,试样表面钛元素以TiO2形式存在,钙和磷元素以磷酸钙形式存在。X射线衍射和拉曼光谱分析表明,试样表面层由锐钛矿TiO2和羟基磷灰石组成。在无钙Hank’s平衡盐液中的动电位极化实验表明,水热处理试样的耐蚀性比抛光试样的显著提高。本研究提供了易于操作、处理温度低、腐蚀性低的生物活性表面改性方法,此方法可用于生物医用多孔Ti6Al4V合金的表面改性。
基金
Projects(xjj2011096,CHD2011JC001)supported by the Fundamental Research Fund for the Central Universities,China
Projects(50901058,51374174)supported by the National Natural Science Foundation of China
Project(2013JZ015)supported by the Science and Technology Program of Shaanxi Province,China