期刊文献+

宏观大孔在泡沫钛烧结过程的体积变化(英文)

Volume change of macropores of titanium foams during sintering
下载PDF
导出
摘要 理论分析造孔剂技术制备的泡沫钛中宏观大孔在烧结过程体积减小、不变和增大3种条件下所获得的泡沫孔隙率。比较不同条件下孔隙率与造孔剂含量的关系,并对宏观大孔在烧结过程的体积变化进行探讨。结果表明,第一种情况下的孔隙率与造孔剂含量的关系取决于宏观大孔在烧结过程的体积减小量和骨架上微观小孔的体积,而另外两种情况下所获得的孔隙率大于造孔剂含量。理论分析表明所得宏观大孔在烧结过程的体积是减小的。 The porosity of titanium foams obtained from the space holder technique was theoretically analyzed in the cases of volume shrinking, retaining and expanding during sintering. The relationship between porosity and spacer content was compared under different conditions. The kind of volume change of macropores during sintering was discussed. The results indicate that the relationship between porosity and spacer content depends on the decreased volume of macropores and the volume of micropores in cell-walls in the first case, while the porosity will be greater than the spacer content for the other two cases. It proves that the volume change of macropores during sintering decreases based on theory and practice.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3834-3839,共6页 中国有色金属学报(英文版)
基金 Project(51174243)supported by the National Natural Science Foundation of China Project(106112015CDJZR135502)supported by the Fundamental Research Funds for the Central Universities,China
关键词 多孔材料 泡沫钛 造孔剂技术 烧结 体积变化 孔隙率 porous material titanium foam space holder technique sintering volume change porosity
  • 相关文献

参考文献16

  • 1N.JHA,D.P.MONDAL,M.D.GOEL,J.D.MAJUMDAR,S.DAS,O.P.MODI.采用粗空心微球低压粉末冶金法制备空心微球复合泡沫钛(英文)[J].Transactions of Nonferrous Metals Society of China,2014,24(1):89-99. 被引量:1
  • 2J. Jakubowicz,G. Adamek,M. Dewidar.Titanium foam made with saccharose as a space holder[J]. Journal of Porous Materials . 2013 (5)
  • 3Mechanical properties of porous titanium with different distributions of pore size[J].Transactions of Nonferrous Metals Society of China,2013,23(8):2317-2322. 被引量:11
  • 4O. Smorygo,A. Marukovich,V. Mikutski,A.A. Gokhale,G. Jagan Reddy,J. Vinod Kumar.High-porosity titanium foams by powder coated space holder compaction method[J]. Materials Letters . 2012
  • 5Y. Torres,J. Rodríguez,S. Arias,M. Echeverry,S. Robledo,V. Amigo,J. Pavón.Processing, characterization and biological testing of porous titanium obtained by space-holder technique[J]. Journal of Materials Science . 2012 (18)
  • 6Amirhossein Mansourighasri,N. Muhamad,A.B. Sulong.Processing titanium foams using tapioca starch as a space holder[J]. Journal of Materials Processing Tech. . 2011 (1)
  • 7Nihan Tuncer,Gürsoy Arslan,Eric Maire,Luc Salvo.Investigation of spacer size effect on architecture and mechanical properties of porous titanium[J]. Materials Science & Engineering A . 2011
  • 8Bing Ye,David C. Dunand.Titanium foams produced by solid-state replication of NaCl powders[J]. Materials Science & Engineering A . 2010 (2)
  • 9Nihan Tuncer,Gursoy Arslan.Designing compressive properties of titanium foams[J]. Journal of Materials Science . 2009 (6)
  • 10Ampika Bansiddhi,David C. Dunand.Shape-memory NiTi foams produced by solid-state replication with NaF[J]. Intermetallics . 2007 (12)

二级参考文献53

  • 1LONG M, RACK H J. Titanium alloys in total joint replacement-A materials science perspective [J]. Biomaterials, 1998, 19:1621-39.
  • 2OH I H, NOMURA N, MASAHASHI N, HANADA S. Mechanical properties of porous titanium compacts prepared by powder sintering [J]. Scripta Materialia, 2003, 49: 197-202.
  • 3NOMURA N, KOHAMA T, OH I H, HANADA S, CHIBA A, KANEHIRA M, SASAKI K. Mechanical properties of porous Ti-15Mo-5Zr-3AI compacts prepared by powder sintering [J]. Materials Science and Engineering C, 2005, 25: 330-335.
  • 4KRISHNA B V, BOSE S, BANDYOPADHYAY A. Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomaterialia, 2007, 3: 997-1006.
  • 5KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26:5474-5491.
  • 6ITALA A I, YLANEN H O, EKHOLM C, KARLSSON K H, ARO H T. Pore diameter of more than 100 gin is not requisite for bone ingrowth in rabbits [J]. Journal of Biomedical Materials Research, 2001, 58: 679-683.
  • 7WEN C E, MABUCHI M, YAMADA Y, SHIMOJIMA K, CHINO Y, ASAHINA T. Processing of biocompatible porous Ti and Mg [J]. Scripta Materialia, 2001, 45: 1147-1153.
  • 8TAKEMOTO M, FUJIBAYASHI S, NEO M, SUZUKI J, KOKUBO T, NAKAMURA T. Mechanical properties and osteoconductivity of porous bioactive titanium [J]. Biomaterials, 2005, 26: 6014-6023.
  • 9PARTHASARATHY J, STARLY B, RAMAN S, CHRISTENSEN A. Mechanical evaluation of porous titanium (Ti6A14V) structures with electron beam melting (EBM) [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3: 249-259.
  • 10CHEN L J, LI T, LI Y M, HE H, HU Y H. Porous titanium implants fabricated by metal injection molding [J]. Transactions of Nonferrous Metals Society of China, 2009, 19:1174-1179.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部