期刊文献+

言语情感描述体系的试验性研究 被引量:2

A STUDY OF A TRANSCRIPTION SYSTEM FOR SPEECH EMOTION
原文传递
导出
摘要 基于新闻有稿播音,采用多视角分析方式,探究言语情感生成及其衍化的可能机制。我们选取了与情感联系最为直接的三方面——认知评价、心理感受和生理状态,来构建言语情感描述体系,以期能够更为精准地刻画情感类型,反映情感的生成过程。在实验环节,组建了全部由播音专业高年级学生参与的测试队伍,通过对其心理感知实验数据的聚类、相关计算分析,形成了情感描述体系中的分级结构。 The generation and evolution mechanisms of speech emotion are explored based on a news broadcast corpus using a multi-perspective analysis approach.The most related three perspectives:cognitive evaluation,psychological feeling,and physiological state,are adopted to compose a transcription system,with which the refinement of speech emotion can be described more accurately while the process of speech emotion generation can be revealed clearly.Based on psychological tests,whose subjects are all senior broadcasting students,a hierarchical structure of the system is obtained via clustering and correlation analysis.
作者 高莹莹 朱维彬 GAO Yingying;ZHU Weibin
出处 《中国语音学报》 2013年第1期71-81,共11页 Chinese Journal of Phonetics
关键词 言语情感 情感产生 情感描述 Speech emotion Emotion generation Emotion transcription
  • 相关文献

同被引文献26

  • 1徐俊,蔡莲红.面向情感转换的层次化韵律分析与建模[J].清华大学学报(自然科学版),2009(S1):1274-1277. 被引量:7
  • 2韩纪庆,邵艳秋.基于语音信号的情感处理研究进展[J].电声技术,2006,30(5):58-62. 被引量:11
  • 3Yoo H J. Deep convolution neural networks in computer vision: a review. IEIE Transactions on Smart Processing and Computing, 2015, 4(1): 35-43.
  • 4Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH: IEEE, 2014. 1717-1724.
  • 5Zhang C, Zhang Z Y. Improving multiview face detection with multi-task deep convolutional neural networks. In: Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). Steamboat Springs, CO: IEEE, 2014. 1036-1041.
  • 6Sainath T N, Kingsbury B, Saon G, Soltaua H, Mohamed A, Dahlb G, Ramabhadran R. Deep convolutional neural networks for large-scale speech tasks. Neural Networks, 2015, 64: 39-48.
  • 7Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: an overview. In: Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 8599-8603.
  • 8Bengio S, Heigold G. Word embeddings for speech recognition. In: Proceedings of the 15th Conference of the International Speech Communication Association, Interspeech. Singapore: ISCA, 2014. 1053-1057.
  • 9Le Q V, Mikolov T. Distributed representations of sentences and documents. In: Eprint Arxiv, 2014. 1188-1196.
  • 10Kiros R, Zemel R S, Salakhutdinov R. A multiplicative model for learning distributed text-based attribute representations. In: Eprint Arxiv, 2014. 2348-2356.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部