期刊文献+

基于迁移学习的乳腺肿瘤超声图像智能分类诊断 被引量:15

Classification and diagnosis of ultrasound images with breast tumors based on transfer learning
下载PDF
导出
摘要 目的探讨迁移学习方法对乳腺良恶性肿瘤超声图像分类的价值。方法回顾性分析经病理证实的447例乳腺肿瘤的超声声像图,采用主成分分析法对原始图像进行分析提取;在Matlab 7.0软件中编程实现迁移学习,将量化的图像特征作为输入数据,利用迁移学习对乳腺良恶性肿瘤进行智能分类。结果乳腺恶性肿瘤的边缘粗糙度、坚固度、邻域灰度差矩阵粗糙度、肿瘤后方与周围区域回声差异及水平方向高频分量和垂直方向低频分量的直方图能量均明显高于良性肿瘤(P均<0.05)。超声和迁移学习方法诊断乳腺恶性肿瘤的敏感度分别为96.21%(127/132)和96.04%(97/101),特异度为66.35%(209/315)和98.49%(196/199),准确率为75.17%(336/447)和97.67%(293/300)。结论超声图像特征定量化可为识别良恶性乳腺肿瘤提供客观的量化参数;迁移学习可有效对乳腺良恶性肿瘤的声像图进行分类。 Objective To investigate the value of transfer learning methods in classification of ultrasound images of benign and malignant breast tumors.Methods Ultrasonic features of histopathologically proved breast tumors in 447 patients were retrospectively analyzed.The features of original images were extracted using the method of principal component analysis.Matlab 7.0 software was used for achieving transfer learning method.Finally,the quantitative image characteristics were inputted into the program in order to use new methods of transfer learning for identifying the benign and malignant breast tumors.Results The quantitative parameters of ultrasound images with malignant breast tumors,such as edge roughness,firmness,neighborhood gray-tone difference matrix roughness,echo difference between the posterior and peripheral areas of the masses,and the horizontal high-frequency and vertical low-frequency componentshistogram energy were significantly higher than those of the benign breast tumors(all P <0.05).The sensitivity,specificity,the accuracy of the ultrasound and transfer learning method in diagnosis of malignant breast tumors was96.21%(127/132)and 96.04%(97/101),66.35%(209/315)and 98.49%(196/199),75.17%(336/447)and 97.67%(293/300),respectively.Conclusion Quantitative ultrasonic features can provide objective quantitative parameters for identification of benign and malignant breast tumors.Transfer learning methods can effectively classify ultrasound images with benign and malignant breast tumors.
作者 吴英 罗良平 许波 黄君 赵璐瑜 WU Ying;LUO Liangping;XU Bo;HUANG Jun;ZHAO Luyu(Department of Medical Imaging Center,the First Affiliated Hospital of Jinan University,Guangzhou 510630,China;School of Information,Guangdong University of Finance and Economics,Guangzhou 510630,China)
出处 《中国医学影像技术》 CSCD 北大核心 2019年第3期357-360,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金面上项目(81771973)
关键词 乳腺肿瘤 超声检查 迁移学习 特征提取 breast neoplasms ultrasonography transfer learning feature extraction
  • 相关文献

参考文献5

二级参考文献116

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献525

同被引文献124

引证文献15

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部