期刊文献+

电子密度模体插件自动定位方法

Method on automatic location of inserts in electron density phantom
下载PDF
导出
摘要 目的探讨基于深度卷积神经网络(DCNN)对电子密度模体(CIRS 062)插件自动定位的方法。方法首先基于DCNN模型分割CIRS 062的吸气态肺、呼气态肺、松质骨和密质骨4个插件;之后采用摩尔邻域追踪算法处理插件边缘;最后根据几何特征定位其他4个插件。结果基于DCNN分割结果的戴斯相似性系数均>0.85,精确度均>0.81,综合评价指标均>0.61。结论基于DCNN方法可实现插件自动定位。 Objective To investigate automatic location of inserts in the electron density phantom (CIRS 062) based on deep neural network(DCNN).Methods Firstly,four inserts in CIRS 062 were segmented with DCNN model,namely the inhaled lung,the exhaled lung,the solid trabecular bone and the solid dense bone.Then Moore-neighbor tracking algorithm was used to process the segmentation results to obtain the precise segmentation edges.Finally,the other four inserts were located based on the geometric features.Results The results of Dice similarity coefficient were all>0.85,the precision were all>0.81,and F1-measure were all>0.61 based on DCNN.Conclusion The method based on DCNN can realize the automatic positioning of the inserts.
作者 产银萍 肖玲玲 CHAN Yinping;XIAO Lingling(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《中国医学影像技术》 CSCD 北大核心 2019年第3期428-432,共5页 Chinese Journal of Medical Imaging Technology
基金 国家重点研发计划(2016YFC0105102)
关键词 锥束计算机体层摄影术 深度卷积神经网络 电子密度模体 图像分割 cone-beam computed tomography deep convolution neural network electron density phantom image segmentation
  • 相关文献

参考文献4

二级参考文献43

  • 1于金明,袁双虎.图像引导放射治疗研究及其发展[J].中华肿瘤杂志,2006,28(2):81-83. 被引量:99
  • 2Olivier Morin,Amy Gillis,Josephine Chen,Michèle Aubin,M.Kara Bucci,Jean Pouliot,索京涛,陆嘉德.兆伏级锥形束CT:系统说明及IGRT临床应用介绍[J].中国癌症杂志,2006,16(6):513-524. 被引量:9
  • 3尹勇,袁双虎,刘同海,卢洁,于金明.加速器附加锥形束CT图像质量评价[J].中华放射肿瘤学杂志,2007,16(3):225-228. 被引量:25
  • 4Ejere D. Optimization of cone-beam CT image quality for image guided radiotherapy. Holland: Academic Medical Center (AMC), University of Amsterdam, 2006:7-38.
  • 5Jaffrey DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone- beam computed tomography for image-guided radiation therapy. Radiat Oncol Biol Phys, 2002,53(5) :1337-1349.
  • 6Sonke JJ, Remeijer P, van Herk M. In-room cone beam compu- ted tomography. Ontario: University of Windsor, 2006 : 27.
  • 7Ding GX, Duggan DM, Coffey CW, et al. A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol, 2007,85(1) : 116-125.
  • 8Liang X, Jacobs R, Hassan B, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) Part I. On subjective image quality. Eur J Radiol, 2010,75(2) :265-269.
  • 9Steinke MF, Bezak E. Technological approaches to in-room CBCT imaging. Australas Phys Eng Sci Med, 2008,31 (3) :167- 170.
  • 10Munetaka N, Akiko H, Akitoshi K, et al. Imaging artifact and exposure conditions in limited-volume CBCT, comparison be-tween an image intensifier system and a flat panel detector. Oral Radiol, 2006,22(2) :69-74.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部