摘要
针对熔析结晶精炼冶金硅过程中硅与熔析剂分离难的问题,采用高温离心装置通过超重力作用强化固-液相分离过程,研究高温离心分离效率及其影响因素,并探讨高温熔体液固分离过程的物理作用机理。结果表明:增大超重力系数和延长处理时间能提高分离效果,提高处理温度将导致硅收率降低。在600℃、400 G(超重力系数)操作1 h时,分离硅的质量分数高达95%,硅的回收率为95%。与直接酸洗分离工艺相比将减少90%以上的耗酸量,并实现熔析剂的直接回收。最后,分析超重力分离过程中的液体赋存状态及其的物理作用机制。
For the difficult separation problem of silicon and liquation agent in solvent refining of metallurgical silicon, high temperature centrifugal device was employed to intensify the separation process by super-gravity. The efficiency and its influence factors of high temperature centrifugal separation were studied, and the physical mechanism of high temperature separation process of molten liquid and solid was also explored. The results show that the increase of super-gravity coefficient and processing time can improve the effect of separation, whereas increasing the temperature leads to decline of silicon yield. Under 600℃ and 400G (supergravity coefficient) for 1 h, the separation of silicon (mass fraction is up to 95%, and the recovery rate of silicon is 95%. Compared with the direct pickling process, there is a reduction in acid consumption more than 90%, and the solvent can be directly recycled. Finally, the liquid state and physical mechanism of super gravity separation process were briefly demonstrated.
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2015年第11期3155-3163,共9页
The Chinese Journal of Nonferrous Metals
基金
国家自然科学基金资助项目(51174187
51422405
51404229)
关键词
铝硅合金
熔析剂
超重力
离心分离
Al-Si alloy
solvent refining
super-gravity
centrifugal separation