期刊文献+

基于最小梯度支撑的2.5D井地电位法正则化聚焦反演 被引量:3

2.5D focusing inversion for borehole-surface electrical data based on minimum gradient support function
下载PDF
导出
摘要 利用最小梯度支撑稳定因子进行2.5D井地电位聚焦反演。通过对边界近似处理、结合基于图论理论的矩阵重排与填入元分析方法,实现一种快速的正演稀疏矩阵直接分解方法,提高了正演计算效率。为了突出对陡变异常体边界的识别能力,引入最小梯度支撑稳定因子(MGS),采用重加权共轭梯度(RRCG)方法进行反演目标函数求解。结果表明:MGS具有良好的聚焦特征,RRCG反演迭代过程稳定、收敛速度快。对"L-curve"选择正则化因子的算法进行改进,避免了传统采用最大曲率计算时需要对离散数据求导引起的误差,同时该算法对于出现多个拐点的"L-curve"也可正确选择正则化因子。 The 2.5Dfocusing inversion for borehole-to-ground electric potential was implemented using minimum gradient support function. The boundary approximation, matrix rearrangement and fill-in element analysis algorithm based on graph theory were adopted to complete the fast algorithm of direct decomposition method for sparse matrix, the computational efficiency was improved. In order to improve the inversion ability to discriminate boundary of abnormal bodies, the minimum gradient support stability factor (MGS) was adopted. On the other hand, re-weighted regularized conjugate gradient (RRCG) inversion method was applied to solve inverse function. The results show that the stability factor is good at invert sharp boundary of underground bodies, RRCG method is stable and fast. For the rapid selection of the most suitable regularization factor, the revised “L-curve” algorithm was studied. New method based on the simply principle of distance from point to line, the error caused by the derivation of discrete data was avoided when the regularization factor was calculated using the maximum curvature method, moreover, for multiple inflection point of the “L-curve”, it also can select the best regularization factor.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2015年第11期3182-3189,共8页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金青年资助项目(41304055 41304056 41104074)
关键词 井地电位法 重加权共轭梯度法 L-CURVE 最小梯度支撑稳定因子 LDLT分解算法 borehole-surface electrical method re-weighted regularized conjugate gradient L-curve minimum gradient support function LDLT factorization
  • 相关文献

参考文献11

  • 1PaoloMauriello,DomenicoPatella.Resistivity anomaly imaging by probability tomography[J]. Geophysical Prospecting . 2001 (3)
  • 2ZHOU B,GREENHALGH S A.A synthetic study on cross hole resistivity imaging using different electrode arrays. Exploration Geophysics . 1997
  • 3Smith, Nariida C.,Vozoff, Keeva.TWO-DIMENSIONAL DC RESISTIVITY INVERSION FOR DIPOLE-DIPOLE DATA. IEEE Transactions on Geoscience and Remote Sensing . 1984
  • 4Zhang, Jie,Mackie, Randall L.,Madden, Theodore R.3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics . 1995
  • 5D. F. Pridmore,G. W. Hohmann,S. H. Ward,W. R. Si.An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics . 1981
  • 6Li, Y.,Oldenburg, D.W.3-D inversion of induced polarization data. Geophysics . 2000
  • 7Constable SC,Parker RL,Constable CG.Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics . 1987
  • 8Smith J T,Boober J R.Rapid inversion of two-and three-dimensional magnetotelluric data. Chinese Journal of Geophysics . 1991
  • 9Zhdanov, Michael S.,Fang, Sheng.Three-dimensional quasi-linear electromagnetic inversion. Radio Science . 1996
  • 10deGroot-Hedlin, C.,Constable, S.Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics . 1990

共引文献1

同被引文献37

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部