期刊文献+

用小波实现两类非平稳过程的平稳化(英文)

Stationarizing Two Classes of Nonstationary Processes by Wavelet
下载PDF
导出
摘要 主要讨论了两类非平稳过程小波变换后的平稳性。利用小波的局部性及暗含的差分性质 ,证明了在小波变换后 ,分数差分平稳过程和可调和周期相关过程是平稳的。 The main purpose is to discuss the stationarity of two classes of nonstationary processes after wavelet transformations.Owing to the fact that the wavelet transformation possesses localization and implicit difference property,the authors show that after wavelet transformation,the fractionally differenced process and the harmonizable periodically correlated process may be changed into stationary processes.
出处 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第1期19-28,共10页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金资助项目 (10 1710 0 5 )
关键词 非平稳过程 平稳化 小波 nonstationary stationarizing wavelet
  • 相关文献

参考文献7

  • 1[1]Masry E.The Wavelet Transform of Stochastic Processes with Stationary Increment and Its Application to Fractional Brownian Motion.IEEE Trans on Information Theory,1993,39(1):260~264
  • 2[2]Krim H.Multiresolution Analysis of a Class of Nonstationary Processes.IEEE Trans on Information Theory,1995,41(4):1010~1020
  • 3[3]Percival D B,Walden A T.Wavelet Methods for Time Series Analysis.London:Cambridge University Press,2000.304
  • 4[4]Hosking J R M.Fractional Differencing.Biometrika,1981,63(1):165~176
  • 5[5]Koopmans L H.The Spectral Analysis of Time Series.New York:Academic Press,1974.130,167
  • 6[6]Daubechies I.Ten Lectures on Wavelet.Philadelphia,SIAM,1992.172
  • 7[7]Hurd H L.Representation of Strongly Harmonizable Periodically Correlated Processes and Their Covariances.J Multi Analysis,1989,29(1):53~67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部