期刊文献+

基于CNN的Webshell文件检测 被引量:13

Webshell Detection Based on Convolutional Neural Network
下载PDF
导出
摘要 Webshell是一种以ASP、PHP和JSP等网页文件形式存在的命令执行环境,可以用于Web服务器的远程访问控制.Webshell采用混淆和加密,增加了分析难度和检测难度.基于特征值匹配的Webshell检测方法难以有效对抗混淆加密,且无法检测未知的Webshell,为此提出了一种基于CNN的Webshell检测方法.该方法首先编译PHP文件获取opcode,再利用词汇表模型提取词序特征,最后训练得到CNN检测模型.实验结果表明,该方法在精确率、召回率、F1值都优于传统的机器学习算法,且检测率也高于现有的安全工具,证明了该方法的有效性. Webshell was a command execution environment in the form of Web file such as ASP,PHP,and JSP,which was used for remote access control of Web servers. It often disguised itself through obfuscation and encryption,which increased the difficulty of analysis and detection. Based on the feature value matching,the existing Webshell detection methods couldn’t effectively prevent obfuscation and encryption,and couldn ’t detect unknown Webshell neither. Therefore,a novel Webshell detection method based on CNN was proposed. Firstly,this method compiled PHP files to obtain opcodes,then vocabulary model was used to extract word order features,and finally the CNN detection model was established based on the extracted feature vectors. Experiment results showed that the accuracy,recall rate and F1 score of this method were better than the traditional machine learning algorithms,and the detection rate was higher than the existing security tools,which proved the effectiveness of the proposed method.
作者 傅建明 黎琳 王应军 FU Jianming;LI Lin;WANG Yingjun(School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,China;Key Laboratory of Aerospace Information Security and Trusted Computing,Wuhan University,Wuhan 430072,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2019年第2期1-8,共8页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61373168 U1636107) 中国科学院信息工程研究所中国科学院网络测评技术重点实验室开放课题
关键词 WEBSHELL opcode 词汇表模型 深度学习 Webshell opcode vocabulary model deep learning
  • 相关文献

参考文献7

二级参考文献53

  • 1李万新.Web日志数据挖掘在服务器安全方面的应用[J].中山大学学报论丛,2007,27(5):116-118. 被引量:5
  • 2刘冰.多类SVM分类算法的研究和改进.电脑知识与技术,2007,(6):1590-1593.
  • 3Xiao Yao. Large and Medium-sized Network Intrusions Cases Research[J]. Publishing House Of Electronics Industry, 2010,(10):301-310.
  • 4J. Ross Quinlan. C4. 5: programs for machine learning[M]. San Francisco: Morgan Kaufmann, 1993.
  • 5Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen.Malicious web content detection by machine learning[J]. Expert Systems with Applications,2010,37(1):55-60.
  • 6Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, USA: IEEE Press, 1997: 276-285.
  • 7Lin H T, Lin C J, Weng R C. A note on Plat tps probabilistic outputs for support vector machines[J]. Machine Learning, 2007, 68 (3): 267-276.
  • 8Brinker K. On multiclass active learning with support vector machines[C]//Proceedings of European Conference on Artificial Intelligence. 2004: 969-970.
  • 9Yuan X, Lai W, Mei T , et al. Automatic video genre categorization using hierarchical SVM[C]//IEEE International Conference on Image Processing. Atlanta: IEEE Press, 2006: 2905-2908.
  • 10Tong S , Chang. E Support vector machine active learning for image ret rieval[C]//Proceedings of the 9th ACM International Conference on Multimedia. Ottawa, Canada: ACM Press, 2001, 9: 107-118.

共引文献66

同被引文献58

引证文献13

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部