期刊文献+

基于变分自编码器的情感回归半监督领域适应方法 被引量:5

A Semi-supervised Domain Adaptation Method of Sentiment Regression on Variational Autoencoder
下载PDF
导出
摘要 提出一个新的情感回归半监督领域适应方法.首先使用长短期记忆网络(long short-term memory,LSTM)实现回归模型,其次使用变分自编码器(variational autoencoder,VAE)实现生成模型,最后联合学习LSTM回归模型和VAE生成模型,实现基于变分自编码器的情感回归半监督领域适应模型.实验结果表明,所提出的基于变分自编码器的情感回归半监督领域适应方法较其他基准方法能有效提高实验性能. A novel approach was proposed for semi-supervised domain adaptation of sentiment regression,namely VAE-R. In VAE-R model,a long short-term memory( LSTM) network was employed to achieve a regression model,and then a generation model based on variational autoencoder( VAE). In the learning process,the LSTM regression model and the VAE generation model were jointly learned. Empirical studies had demonstrated the effectiveness of the proposed approach in the semi-supervised domain adaptation.
作者 刘欢 徐健 李寿山 LIU Huan;XU Jian;LI Shoushan(Natural Language Processing Lab,Soochow University,Suzhou 215006,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2019年第2期47-51,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61331011 61375073)
关键词 变分自编码器 情感回归 半监督 领域适应 VAE sentiment regression semi-supervised domain adaptation
  • 相关文献

同被引文献32

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部