期刊文献+

基于SDAE-SVM的压力机轴承故障诊断方法 被引量:3

Fault Diagnosis of Press Bearing Based on SDAE-SVM
原文传递
导出
摘要 针对压力机轴承故障类型多、故障特征难以提取等问题,提出了一种基于堆叠去噪自编码网络(SDAE)与支持向量机(SVM)的压力机轴承故障诊断方法。该方法首先通过堆叠多层去噪自编码器构成深度网络模型,用无监督的方法训练每一层网络并在原始数据中加入噪声以得到更加稳健的特征表达,然后通过反向传播(BP)神经网络进行有监督的学习,对整个网络参数进行微调优化得到更接近样本分布的网络模型,最后利用SVM分类器对故障进行识别分类。实验中所提出的基于SDAE-SVM的故障诊断方法的故障识别准确率高达98%,表明该方法能有效提高压力机轴承的故障识别精度。 Various types of faults,difficult to extract features of the faults are the common problems for the bearing of press machine. In this work,a method of fault diagnosis for such bearings has been developed based on stacked denoising auto-encoder networks( SDAE) and support vector machine( SVM). In this method,a multi-layer denoising auto-encoder( SDAE) is used to construct a deep network model. Then,each layer of network is trained using unsupervised method,and mixed with noise to obtain a robust feature representation. Supervised learning using back propagation( BP) neural network to optimize the whole network parameters,thus obtaining a new identical network model with similar sample distribution. Finally,SVM classifier assists the model to identify the fault classification. The experimental results show that the proposed SDAE-SVM-based method can effectively improve the accuracy of recognizing the fault of the press bearings,with the value up to 98%.
作者 张庆磊 张枫
出处 《数字制造科学》 2018年第3期203-208,共6页
基金 国家自然科学基金资助项目(71171154)
关键词 轴承 堆叠去噪自编码网络 支持向量机 故障诊断 bearing stacked denoising auto-encoder networks support vector machine fault diagnosis
  • 相关文献

参考文献5

二级参考文献70

  • 1杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 2熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445. 被引量:66
  • 3李佛琳,赵春江,刘良云,王纪华,杨铁钊,靳志伟.烤烟鲜烟叶成熟度的量化[J].烟草科技,2007,40(1):54-58. 被引量:64
  • 4陆爽.基于奇异值分解和支持向量机的滚动轴承故障模式识别[J].农业工程学报,2007,23(4):115-119. 被引量:12
  • 5GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.631-639.
  • 6段向阳 王永生 苏永生.基于奇异值分解的信号特征提取方法研究.振动与冲击,2009,28(11):30-33.
  • 7Coates A,Ng A Y,Lee H.An analysis of single-layer networks in unsupervised feature learning[C]//International Conference on Artificial Intelligence and Statistics.Ft.Lauderdale,FL,USA:AISTATS.2011:215-223.
  • 8Lee H,Grosse R,Ranganath R,et al.Unsupervised learning of hierarchical representations with convolutional deep belief networks[J].Communications oftheACM,2011,54(10):95-103.
  • 9Saxe A,Koh P W,Chen Z,et al.On random weights and unsupervised feature learning[C]// Proceedings of the 28th International Conference on Machine Learning (ICML-11).Bellevue,Washington,USA:International Machine Learning Society (IMLS).2011:1089-1096.
  • 10Rifai S,Vincent P,Muller X,et al.Contractive auto-encoders:Explicit invariance during feature extraction[C]//Proceedings of the 28th International Conference on Machine Learning (ICML-11).Bellevue,Washington,USA:International Machine Learning Society (IMLS).2011:833-840.

共引文献59

同被引文献55

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部