摘要
首先提出了基于多层动态自适应搜索技术的最小二乘支持向量机参数优化方法,然后采用最小二乘支持向量机对典型非线性控制系统的辨识进行了研究.辨识结果表明,最小二乘支持向量机可以用于非线性控制系统辨识,多层动态自适应搜索方法确定了最优支持向量机参数,从而获得精确的非线性控制系统辨识结果.
A novel least squares support vector machines (LS-SVM) for function estimationis is presented. And then, a hyper parameters and kernel parameters optimization approach called multi-layer adaptive best-fitting parameters search method is developed. According to different learning problem, the optimization approach can obtain appropriate LS-SVM parameters adaptively. Non-linear control system identification is studied using the improved LS-SVM. The results show that the optimization approach can induct best-optimized parameters for LS-SVM, and optimized LS-SVM provides excellent control system identification precision.
出处
《控制与决策》
EI
CSCD
北大核心
2004年第2期223-225,229,共4页
Control and Decision
基金
空军重点型号工程资助项目.
关键词
机器学习
神经网络
支持向量机
最小二乘支持向量机
非线性控制系统
machine learning
neural networks
support vector machines
least square support vector machines
nonlinear control system