期刊文献+

Enantioselective assay of S(+)- and R(-)-propafenone in human urine by using RP-HPLC with pre-column chiral derivatization 被引量:3

Enantioselective assay of S(+)- and R(-)-propafenone in human urine by using RP-HPLC with pre-column chiral derlvatization
下载PDF
导出
摘要 The enantioselective assay for S(+)- and R(-)-propafenone (PPF) in human urine that developed in this work involves extraction of propafenone from human urine and using S(+)-propafenone as internal standard, chiral derivatization with 2,3,4,6-tetra-O-b-D-glucopranosyl isothiocyanate, and quantitation by an RP-HPLC system with UV detection (l=220 nm). A baseline separation of propafenone enantiomers was achieved on a 5-mm reverse phase ODS column, with a mixture of methanol:water:glacial acetic acid (25:12:0.02,v/v) as mobile phase. There was good linear relationship from 24.9 ng/ml to 1875.0 ng/ml for both of enantiomers. The regression equations of the standard curves based on CS-PPF (or CR-PPF ) versus ratio of AS-PPF/AS (or AR-PPF/AS ) were y=0.0032x-0.081, (r=0.999) for S-PPF and y=0.0033x+0.0039, (r=0.998) for R-PPF, respectively. The method抯 limit of detection was 12.5 ng/ml for both enantiomers, and the method抯 limit of quantitation was 28.20.52 ng/ml for S-PPF, 30.40.53 ng/ml for R-PPF (RSD<8%, n=5). The analytical method yielded average recovery of 98.9% and 100.4% for S-PPF and R-PPF, respectively. The relative standard deviation was no more than 6.11% and 6.22% for S-PPF and R-PPF, respectively. The method enabled study of metabolism of S(+)- and R(-)-propafenone in human urine. The results from 7 volunteers administered 150 mg racemic propafenone indicated that propafenone enantiomers undergo stereoselective metabolism and that in the human body, S(+)-propafenone is metabolized more extensively than R(-)- propafenone. The enantioselective assay for S(+)- and R(-)-propafenone (PPF) in human urine that developed in this work involves extraction of propafenone from human urine and using S(+)-propafenone as internal standard, chiral derivatization with 2,3,4,6-tetra-O-fl-D-glucopranosyl isothiocyanate, and quantitation by an RP-HPLC system with UV detection (λ=220 nm). A baseline separation of propafenone enantiomers was achieved on a 5-μm reverse phase ODS column, with a mixture of methanol:water:glacial acetic acid (25:12:0.02,v/v) as mobile phase. There was good linear relationship from 24.9 ng/ml to 1875.0 ng/ml for both of enantiomers. The regression equations of the standard curves based on CS-PPF (or CR-PPF ) versus ratio of As-PPF/As (or AR-PPF/As ) were y=0.0032x-0.081, (r=0.999) for S-PPF and y=0.0033x+0.0039, (r=0.998) for R-PPF, respectively. The method's limit of detection was 12.5 ng/ml for both enantiomers, and the method's limit of quantitation was 28.2±0.52 ng/ml for S-PPF, 30.4±0.53 ng/ml for R-PPF (RSD<8%, n=5). The analytical method yielded average recovery of 98.9% and 100.4% for S-PPF and R-PPF, respectively. The relative standard deviation was no more than 6.11% and 6.22% for S-PPF and R-PPF, respectively. The method enabled study of metabolism of S(+)- and R(-)-propafenone in human urine. The results from 7 volunteers administered 150 mg racemic propafenone indicated that propafenone enantiomers undergo stereoselective metabolism and that in the human body, S(+)-propafenone is metabolized more extensively than R(-)-propafenone.
出处 《Journal of Zhejiang University Science》 CSCD 2004年第2期226-229,共4页 浙江大学学报(自然科学英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 30225047) and by SRF for ROCS SEM and Zhejiang Provincial Natural Science Foundation (No. RC97016) China
关键词 Enantioselective assay PROPAFENONE Human urine Chiral derivatization High-performance liquid chroma-tography 丙胺苯丙酮 尿液 手性衍生作用 冰醋酸 药物动力学
  • 相关文献

同被引文献5

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部