期刊文献+

“超二次”Hamilton系统的次调和解 被引量:3

Subharmonic Solutions for "Superquadratic" Hamiltonian Systems
下载PDF
导出
摘要 用临界点理论中的极小极大方法研究了非凸非自治"超二次"Hamilton系统 z=JHz(z,t)无穷多个不同的次调和解的存在性.这里J是标准辛矩阵,H:R2n×RR是连续可微函数,关于变量t是T周期的. Infinte distinct subharmonic solutions are obtained for nonconvex and nonautonomous Hamiltonian systems =JH_z(z, t) by using the minimax methods in critical point theory, whereJ is a standard sympletic matrx, H:R^(2n)×R→R is continuously differentiable, and T-period in the second variable.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第1期1-7,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(1987016) 教育部科学技术重点项目 教育部高等学校优秀青年教师教学科研奖励计划.
关键词 HAMILTON系统 次调和解 超二次条件 临界点 辛矩阵 Hamiltonian systems subharmonic solutions superquadratic
  • 相关文献

参考文献14

  • 1[1]Rabinowitz P. On Subharmonic Solutions of Hamiltonian Systems [J]. Comm Pure Appl Math, 1980, 31: 609-633.
  • 2[2]Liu C G. Subharmonic Solutions of Hamiltonian Systems [J]. Nonl Anal, 2000, 42: 185-198.
  • 3[3]Elves Alves De Silva. Subharmonic Solutions for Superquadratic Hamiltonian Systems [J]. J Diff Eq, 1995, 115: 120-145.
  • 4[4]Willem M. Subharmonic Oscillations of Convex Hamiltonian Systems [J]. Nonl Anal Theo Meth & Appl, 1985, 9(11): 1303-1311.
  • 5[5]Ekeiand I, Hofer H. Subharmonic for Convex Nonautonmous Hamiltonian Systems [J]. Comm Pure Appl Math, 1987, 40: 1-36.
  • 6[6]Michalek R, Tarantello G. Subharmonic Solutions with Prescribed Minimal Period for Nonautonomous Hamiltonian Systems [J]. J Diff Eq, 1988, 72: 28-55.
  • 7[7]Girardi M, Matzeu M. Dual Morse Index Estimates for Periodic Solutions of Hamiltionian Systems in Some Noconvex Superquadratic Case [J]. Nonl Anal Theo Meth & Appl, 1991, 17(5): 481-497.
  • 8[8]Liu J Q, Wang Z Q. Remarks on Subharmonic Solutions with Minimal Period of Hamiltonian Systems [J]. Nonl Anal Theo Meth & Appl, 1993, 20(7): 803-821.
  • 9[9]Yang Jiaxin, Zheng Yu, Li Zhuang. Multipe Subharmonic Solutions of Nonautonomous Hamiltonian System [J]. J of Mathematics Research & Exposition, 1993, 12(2): 215-221.
  • 10[10]Xu Yuantong. Subharmonic Solutions for Convex Nonautonomous Hamiltonian Systems [J]. Nonl Anal Theo Meth & Appl, 1997, 21(8): 1359-1371.

同被引文献36

  • 1欧增奇,唐春雷.一类非自治超二次二阶Hamilton系统的周期解[J].西南师范大学学报(自然科学版),2005,30(2):226-229. 被引量:5
  • 2Salvatore A. Multiple Solitary Waves for a Non-Homogeneous Sehrodinger-Maxwell System in R3 [J]. Adv Nonlinear Stud, 2006, 6(2): 157-169.
  • 3ZHAO Lei-Ga, ZHAO Fu-Kun. Positive Solutions for Schrodinger-Poisson Equations with a Critical Exponent [J].Nonlinear Anal, 2009, 70(6) : 2150 - 2164.
  • 4CHEN Shang-Jie, TANG Chun-Lei. High Energy Solutions for the Superlinear Schrodinger-Maxwell Equations [J]. Nonlinear Anal, 2009, 71 : 4927 - 4934.
  • 5ZOU Wei-Ming, Schechter M. Critical Point Theory and Its Applications[M]. New York: Springer, 2006.
  • 6Benci V, Fortunato D, Masiello A, et al. Solitons and the Electromagnetic Field [J]. Math Z, 1999, 232(1) : 73 - 102.
  • 7Ekeland I. On the Variational Principle[J].J Math Anal Appl, 1974, 47: 324- 353.
  • 8Azzollini A, Pomponio A. Ground State Solutions for the Nonlinear Schr6dinger-Maxwell Equations [J]. J Math Anal Appl, 2008, 345(1): 90-108.
  • 9Ambrosetti A, Ruiz D. Multiple Bound States for the SehrOdinger-Poisson Problem [J].Commun Contemp Math, 2008, 10(3) : 391 - 404.
  • 10Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部