期刊文献+

一种基于量子染色体的遗传算法 被引量:45

A novel genetic algorithm based on the quantum chromosome
下载PDF
导出
摘要 将进化理论和量子理论结合,提出一种基于量子计算概念和理论的量子遗传算法.算法借鉴量子比特的叠加性,采用量子编码来表征染色体,能够表示出许多可能的线性叠加状态.模拟量子坍塌的随机观察可带来丰富的种群,量子染色体的进化也能够简单方便地引导进化.因此,它比传统遗传算法具有更好的种群多样性,更快的收敛速度和全局寻优的能力.从理论上证明了它的全局收敛性,仿真计算也表明了此算法的优越性. The genetic algorithm is an efficient optimization tool for its independence of problems, intrinsic parallelism and inherent learning capacity; however, it has some disadvantages such as slow convergence and prematurity. In this paper, a novel algorithm, called the quantum genetic algorithm—QGA, is proposed based on the combination of the quantum theory with the evolutionary theory. By adopting the qubit chromosome as a representation, QGA can represent a linear superposition of solutions due to its probabilistic representation. The random observation simulating the quantum collapse can bring diverse individuals, and the evolution of quantum chromosome can also pilot the evolution. So it has better diversity than the classical genetic algorithm. Rapid convergence and good global search capacity characterize the performance of QGA. The paper not only proves the global convergence of the QGA, but also some simulation experiments are shown to prove its superiority over other algorithms.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第1期76-81,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60073053) 国家"863"计划资助项目
关键词 量子遗传算法 量子染色体 模拟量子坍塌 收敛速度 quantum genetic algorithms quantum chromosome evolution convergence
  • 相关文献

参考文献12

  • 1张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78
  • 2汪西莉,刘芳,焦李成.基于概率模型的遗传算法[J].西安电子科技大学学报,2002,29(3):347-350. 被引量:4
  • 3Holland J H. Genetic Algorithms and Classifier Systems: Foundations and Their Applicaitons[A]. Proceedings of the Second International Conference on Genetic Algorithms[C]. Hillsdale: Lawrence Erlbaum Associates, 1987. 82-89.
  • 4Muldenbein H. Parallel Genetic Algorithms in Combinatorial Optimization[A]. Computer Science and Operation Research--New Developments[M]. New York: Pergamon Press, 1992. 441-453.
  • 5Grefenstette J J, Coped R, Rosmaita B, et al. Genetic Algorithms for the Traveling Salesman Problem[A]. Proceedings of the First International Conference on Genetic Algorithms and Their Applications[C]. NJ: Lawrence Earlbaum Associate, 1985. 160-168.
  • 6Kristinsson K, Dumont G A. System Identification and Control Using Genetic Algorithms[J]. IEEE Trans on Sys, Man and Cybernetic,1992, 22(5): 1033-1046.
  • 7Krishnakumar K, Goldberg D E. Control System Optimization Using Genetic Algorithms[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 735-740.
  • 8Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
  • 9Stumpf J D, Feng X, Kelnhofer R W. An Enhanced Operator-oriented Genetic Search Algorithm[A]. The First IEEE Conference on Evolutionary Computation[C]. Orlando; IEEE Press, 1994. 235-238.
  • 10Hesser J, Manner R. Towards an Optimal Mutation Probability for Genetic Algorithms[A]. Proceedings of the First Conference on Parallel Problem Solving from Nature[C]. Dortmund: Springer, 1990. 23-32.

二级参考文献6

  • 1徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 2徐宗本,中国科学.E,1996年,26卷,4期,364页
  • 3Qi X,IEEE Trans Neural Netw,1994年,5卷,1期,102页
  • 4Georges R H,Fernando G L,David E G.the Compact Genetic Algorithms[].IEEE Transactions on Evolutionary Computation.1999
  • 5DeJong K A.An Analysis of the Behevior of a Class of Genetic Adaptive Systems[]..1975
  • 6Srinivas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[].IEEE Transactions on Systems Man and Cybernetics.1994

共引文献80

同被引文献339

引证文献45

二级引证文献397

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部