一类非线性高阶双曲方程的稳定和不稳定集(英文)
Stable and unstable sets for nonlinear hyperbolic equations of higher order
摘要
通过构造稳定和不稳定集 ,证明了方程 utt- [a0 + na1| ux| n-2 ux]uxx- a2 uxxtt=0的初边值问题整体解的存在和爆破性 .
By constructing so-called stable set and unstable set,the global existence and blowing-up property of solutions are discussed to the initial boundary value problem for the equationu(tt)-[a0+na1|ux|^(n-2)ux]u(xx)-a2u(xxtt)=0.
出处
《信阳师范学院学报(自然科学版)》
CAS
2004年第1期18-20,24,共4页
Journal of Xinyang Normal University(Natural Science Edition)
关键词
非线性高阶双曲方程
稳定和不稳定集
整体解
爆破性
nonlinear hyperbolic equation
stable and unstable sets
global soution
blow up of solution
参考文献11
-
1ZHUANG W, GUITONG Y. Propagation of solitary waves in the nonlinear rods [J]. Applied Mathematics and Mechanics, 1986, (7): 571-581.
-
2ZHANG S Y,ZHUANG W. Strain solitary waves in the nonlinear elastic rods (in Chinese)[J]. Acta Mechanica Sinica.1988,20:56-58.
-
3CHEN G W ,YANG Z J ,ZHAO Z C. Intial value problems and first boundary problems for a class of quasilnear wave equations[J].Acta Mathematicae Applicatce Sinica,1993,(9):289-301.
-
4CHEN G W,WANG S B. Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order[J]. Comment Math Univ Carolinae, 1995,36:475-487.
-
5SATTINGER D H. On global solutions of nonlinear hyperbolic equations[J]. Arch Rat Mech Anal, 1968,30:148-172.
-
6PAYNE L E, SATTINGER D H. Saddle points and instability of nonlinear hyperbolic equations[J]. Isr I Math, 1975,22:273-303.
-
7TODOROVA G. Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms[J]. Math Anal Appl,1999,239:213-226.
-
8TSUTSUMI M. Existence and nonexistence of global solutions for nonlinear parabolic equations[J]. Publ RIMS Kyoto Univ, 1972 , 8: 211-229.
-
9PAZY A. Semigroup of linear operators and applications to partial differential equations[M]. Springer, New York,1983.
-
10BALL S M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equation[J]. Quart J Math, 1977,28: 473-486.