期刊文献+

基于模糊神经网络的飞行仿真转台控制 被引量:3

Fuzzy-Neural Control of High Precision Flight Simulator
下载PDF
导出
摘要 针对飞行仿真转台系统的非线性问题 ,提出了基于模糊神经网络的自适应控制方法 ,并且提出了新的推理算法 ,该控制方法结合了神经网络和模糊推理的优点 ,可以更合理地选择初始权值 ,既可提高神经网络的学习过程又可在线寻优模糊规则 ,通过实验表明该控制方法可以明显提高控制系统的跟踪性能 ,并且具有很强的对外干扰和非线性因素的鲁棒性。 A digital tracking controller based on fuzzy-neural network for high precision flight simulator is presented. The article also proposes a new algorithm of the fuzzy-neural network. Since the proposed adaptive controler combines the advantage of neural network and fuzzy reasoning, it can not only reduce the time of neural network learning but also find the optimum rule of fuzzy reasoning. Experimental results demonstrate that the proposed controller can effectively improve tracking performance and has robustness against parameter uncertainty and external disturbance.
出处 《计算机仿真》 CSCD 2004年第1期47-49,115,共4页 Computer Simulation
基金 航空基础科学基金资助项目 (编号 :0 0E5 10 2 2 )
关键词 模糊神经网络 飞行仿真转台 自适应控制 鲁棒性 Flight simulator Fuzzy-neural network Robustness
  • 相关文献

参考文献5

  • 1[1]Y C Chen and C C Teng .A model reference control structure using a fuzzyneural network [J].Fuzzy Sets and Systems 1995,73(2):291-312.
  • 2[2]N Muskinja and B Tovornik and D Donlagic.How to design s discrete supervisor controller for real-time fuzzycontrol system [J].Math,Phys.Electron, 1997,22(1): 161-166.
  • 3[3]L X Wang.A Coruse in Fuzzy System andControl[M].Prentice-hall,EnglewoodCliff, NJ,1997.63-72.
  • 4[4]J R Noriega and H Wang.A direct adaptive neural-networkcontrol for unknown nonlinear system and its application [J].IEEE Trans,Neural Networks,1998 ,9(1):27-34.
  • 5[5]M Zhihog and H R Wu.An adaptive tracking controller using neural networksfor a class of nonlinear systems [J].IEEE Trans Neural Networks ,1998,9(5):947-955.

同被引文献51

  • 1肖思和,鲁红英.基于动态模糊神经网络的入侵检测系统[J].成都理工大学学报(自然科学版),2004,31(4):402-407. 被引量:1
  • 2张毅,罗元.基于人工神经网络城市交通流量智能预测的研究[J].重庆邮电学院学报(自然科学版),2005,17(2):241-243. 被引量:15
  • 3李文,欧青立,沈洪远,伍铁斌.智能控制及其应用综述[J].重庆邮电学院学报(自然科学版),2006,18(3):376-381. 被引量:40
  • 4邹村,周耕书.智能控制面临的问题及其展望[J].自动化与仪器仪表,1997(2):1-5. 被引量:1
  • 5[4]Carvajal J,Chen G,Ogmen H.Fuzzy PID Controller:Design,Performance Evaluation and Stability Analysis[J].Information Sciences (S0020-0255),2000,123:249-270.
  • 6[5]Qiao W Z,Mizumoto M.PID Type Fuzzy Controller and Parameters Adaptive Method[J].Fuzzy Sets and Systems (S0165-0114),1996,78:23-35.
  • 7WALTZ M D,FU K S.A Heuristic Approach to Reinforcement Learning Control System[EB/OL].(2006-06-20)[2005-08-11].http://ieeexplore.ieee.org/Xplore/guesthome.jsp.
  • 8MENDEL J M.Application of Artificial Intelligence Techniques to A Spacecraft Control Problem[J].Dengles Rept,1966,25(28):593-598.
  • 9LEONDES C T,MENDEL J M.Artificial Intelligent Control[J].Tech Rept,1967,171(4):433-438.
  • 10LEONDES C T.Advances In Control System[J].Tech Rept,1968,171(5):371-376.

引证文献3

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部