期刊文献+

基于商品分类信息的关联规则聚类 被引量:17

Association Rule Clustering Based on Taxonomy Information
下载PDF
导出
摘要 关联规则挖掘经常产生大量的规则 ,为了帮助用户做探索式分析 ,需要对规则进行有效的组织 聚类是一种有效的组织方法 已有的规则聚类方法在计算规则间距离时都需要扫描原始数据集 ,效率很低 ,而且聚类结果是固定数目的簇 ,不利于探索式分析 针对这些问题 ,提出了一种新的方法 它基于商品分类信息度量规则间的距离 ,避免了耗时的原始数据集扫描 ;然后用OPTICS聚类算法产生便于探索式分析的聚类结构 最后用某个零售业公司的实际交易数据做了实验 ,并通过可视化工具演示了聚类效果 Association rule mining often produces a large number of rules. To facilitate exploratory analysis, structuring of rules is needed. A useful method for structuring rules is clustering. All of the existing methods for clustering rules suffer from the costly scan of the original dataset for determining the distances between rules. Moreover, the result of these methods is a fixed number of clusters that makes exploratory analysis difficult. A new method is proposed to overcome these problems. Taxonomy information is used to measure the distances between rules and the expensive scan of the original dataset is avoided. A Clustering algorithm, OPTICS, is applied to generate the clustering structure suitable for exploratory analysis. Finally, an experiment is conducted on a real-life dataset and the experimental result is presented via a visualization tool, which shows that the method is practical and effective.
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第2期352-360,共9页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目 ( 2 0 0 1AA113 181)
关键词 数据挖掘 关联规则 聚类 可视化 data mining association rule clustering visualization
  • 相关文献

参考文献14

  • 1E G Hetzler, W M Harris, S Harvre et al. Visualizing the full spectrum of document relationships. In: Proc of the 5th Int'l Society for Knowledge Organization Conference. Würzburg: Ergon, 1998. 168~175
  • 2P C Wong, P Whitney, J Thomas. Visualizing association rules for text mining. In: Proc of IEEE Symposium on Information Visualization(INFOVIS'99). San Francisco: IEEE Computer Society, 1999. 120~123
  • 3M Hao, M Hsu, U Dayal et al. Market basket analysis visualization on a spherical surface. HP Labs, Technical Report: HPL-2001-3, 2001
  • 4H Toivonen, M Klemettinen, P Ronkainen et al. Pruning and grouping discovered association rules. The ECML-95 Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, Heraklion, 1995
  • 5G K Gupta, A Strehl, J Ghosh. Distance based clustering of association rules. In: Proc of ANNIE, St. Louis, Missouri: ASME Press, 1999. 759~764
  • 6M Ankerst, M Breunig, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: Proc of 1999 ACM-SIGMOD Int'l Conf Management of Data (SIGMOD'99). Philadephia: ACM Press, 1999. 49~60
  • 7J Han, Y Fu. Discovery of multiple level association rules from large databases. In: Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 420~431
  • 8R Srikant, R Agrawal. Mining generalized association rules.In:Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 407~419
  • 9A Savasere, E Omiecinski, S Navathe. Mining for strong negative associations in a large database of customer transactions. In: Proc of the 14th Int'l Conf on Data Engineering. Orlando: IEEE Computer Society, 494~502
  • 10B Lent, A N Swami, J Widom. Clustering association rules. In: Proc of the 13th Int'l Conf on Data Engineering. Birmingham: IEEE Computer Society, 1997. 220~231

同被引文献129

引证文献17

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部