期刊文献+

3号染色体短臂末端两个大片段基因组区域的基因分布与GC含量分析 被引量:2

Comparing Gene Density and GC Content Between Two Large Genomic Blocks at Short Arm of Chromosome 3
下载PDF
导出
摘要 运用鸟枪法测序技术 ,得到了位于 3p2 5 1和 3p2 6 1区域、大小分别为 32 8kb和 75 3kb的 2个基因组片段 ,分析各片段的GC含量及重复顺序的分布特征 ,并研究不同区域内的基因分布密度。结果表明 :位于 3p2 5 1区域的32 8kb片段具有较高的GC含量 ,在此区域内蛋白编码基因分布密度较高 ,而位于 3p2 6 1区域的 75 3kb片段平均GC含量较低 ,并且是基因贫乏区域。同时发现 :GC rich的SINE类重复顺序在GC含量较高的区域有较高的覆盖率 ,相反AT rich的LINE类重复顺序在GC较低的区域分布较多 。 The present paper is to investigate gene distribution at different genomic region with different local GC content.With shout-gun technology,we sequencing two sequences at 3p25.1 and 3p26.1,at genome size 328 kb and 753 kb respectively.The 328 kb sequence,with an average GC content as high as 47.57%,has high gene density (13.7 gene/100 kb).However,another sequence at 3p26.1 only includes one exon and one intron of large gene GRM7 and the coding sequence size is 11 520 bp only taking a small part(1.31%) of the whole genome region.High percentage distribution of GC-rich repeats of SINEs explain high GC genomic region at 3p25.1 and high concentration of AT-rich repeats of LINEs at 3p26.1 lead to low GC content of the region.Our results suggest isochore structure is the result of coevolution between gene and genome.
出处 《Acta Genetica Sinica》 SCIE CAS CSCD 北大核心 2004年第1期13-18,共6页
基金 国家高技术研究发展计划资助项目 (编号 :863 J19) 中国科学院创新工程资助项目 (编号 :KSCX1 D4)~~
关键词 鸟枪法测序 基因密度 GC含量 重复顺序 shotgun sequencing 3p25.1 3p26.1 gene density GC content
  • 相关文献

参考文献13

  • 1[1]Thiery J,Macaya G,Bernardi G.An analysis of eukaryotic genomes by gradient centrifugation.J Mol Boil,1976,108:219~235.
  • 2[2]Dunham I,Shimizu N,Roe A,Dunham I, Hunt A R,Collins J E,Bruskiewich R,Beare D M,Clamp M,Smink L J,Ainscough R,Almeida J P,Babbage A,Bagguley C,Bailey J,Barlow K,Bates KN,Beasley O,Bird C P,Blakey S,Bridgeman A M,Buck D,Burgess J,Burrill W D,Burton J,Carder C,Carter N P,Chen Y,Clark G,Clegg S M,Cobley V,Cole C G,Collier R E,Connor R E,Conroy D,Corby N,Coville G J,Cox A V,Davis J,Dawson E,Dhami P D,Dockree C,Dodsworth S J,Durbin R M,Ellington A,Evans K L,Fey J M,Fleming K,French L,Garner A A,Gilbert J G R,Goward M E,Grafham D,Griffiths M N,Hall C,Hall R,Hall-Tamlyn G,Heathcott R W,Ho S,Holmes S,Hunt S E,Jones M C,Kershaw J,Kimberley A,King A,Laird G K,Langford C F,Leversha M A,Lloyd C,Lloyd D M,Martyn I D,Mashreghi-Mohammadi M,Matthews L,Mccann O T,Mcclay J,Mclaren S,Mcmurray A A,Milne S A,Mortimore B J,Odell C N,Pavitt R,Pearce A V,Pearson D,Phillimore B J,Phillips S H,Plumb R W,Ramsay H,Ramsey Y,Rogers L,Ross M T,Scott C E,Sehra H K,Skuce C D,Smalley S,Smith M L,Soderlund C,Spragon L,Steward C A,Sulston J E,Swann R M,Vaudin M,Wall M,Wallis J M,Whiteley M N,Willey D,Williams L,Williams S,Williamson H,Wilmer T E,Wilming L,Wright C L,Hubbard T,Bentley D R,Beck S,Rogers J,Shimizu N,Minoshima S,Kawasaki K,Sasaki T,Asakawa S,Kudoh J,Shintani A,Shibuya K,Yoshizaki Y,Aoki N,Mitsuyama S,Roe B A,Chen F,Chu L,Crabtree J,Deschamps S,Do A,Do T,Dorman A,Fang F,Fu Y,Hu P,Hua A,Kenton S,Lai H,Lao H I,Lewis J,Lewis S,Lin S P,Loh P,Malaj E,Nguyen T,Pan H,Phan S,Qi S,Qian Y,Ray L,Ren Q,Shaull S,Sloan D,Song L,Wang Q,Wang Y,Wang Z,White J,Willingham D,Wu H,Yao Z,Zhan M,Zhang G,Chissoe S,Murray J,Miller N,Minx P,Fulton R,Johnson D,Bemis G,Bentley D,Bradshaw H,Bourne S,Cordes M,Du Z,Fulton L,Goela D,Graves T,Hawkins J,Hinds K,Kemp K,Latreille P,Layman D,Ozersky P,Rohlfing T,Scheet P,Walker C,Wamsley A,Wohldmann P,Pepin K,Nelson J,Korf I,Bedell J A,Hillier L,Mardis E,Waterston R,Wilson R,Emanuel B S,Shaikh T,Kurahashi H,Saitta S,Budarf M L,Mcdermid H E,Johnson A,Wong A C C,Morrow B E,Edelmann L,Kim U J,Shizuya H,Simon M I,Dumanski J P,Peyrard M,Kedra D,Seroussi E,Fransson I,Tapia I,Bruder C E,O'brien K P.The DNA sequence of human chromosome 22.Nature,1999,402:489~495.
  • 3[3]Hattori M,Fujiyama T D,Taylor H,McPherson J D,Marra M,Hillier L,Waterston R H,Chinwalla A,Wallis J,Sekhon M,Wylie K,Mardis E R,Wilson R K,Fulton R,Kucaba T A,Wagner-McPherson C,Barbazuk W B,Gregory S G,Humphray S J,French L,Evans R S,Bethel G,Whittaker A,Holden J L,McCann O T,Dunham A,Soderlund C,Scott C E,Bentley D R,Schuler G,Chen H C,Jang W,Green E D,Idol J R,Maduro V V,Montgomery K T,Lee E,Miller A,Emerling S,Kucherlapati,Gibbs R,Scherer S,Gorrell J H,Sodergren E,Clerc-Blankenburg K,Tabor P,Naylor S,Garcia D,de Jong P J,Catanese J J,Nowak N,Osoegawa K,Qin S,Rowen L,Madan A,Dors M,Hood L,Trask B,Friedman C,Massa H,Cheung V G,Kirsch I R,Reid T, Yonescu R,Weissenbach J,Bruls T,Heilig R,Branscomb E,Olsen A,Doggett N,Cheng J F,Hawkins T,Myers R M,Shang J,Ramirez L,Schmutz J,Velasquez O,Dixon K,Stone N E,Cox D R,Haussler D,Kent W J,Furey T,Rogic S,Kennedy S,Jones S,Rosenthal A,Wen G,Schilhabel M,Gloeckner G,Nyakatura G,Siebert R,Schlegelberger B,Korenberg J,Chen X N,Fujiyama A,Hattori M,Toyoda A,Yada T,Park H S,Sakaki Y,Shimizu N,Asakawa S,Kawasaki K,Sasaki T,Shintani A,Shimizu A,Shibuya K,Kudoh J,Minoshima S,Ramser J,Seranski P,Hoff C,Poustka A,Reinhardt R,Lehrach H;International Human Genome Mapping Consortium.The DNA sequence of human chromosome 21.Nature,2000,405:311~319.
  • 4[4]International human genome sequencing consortium.Initial sequencing and analysis of the human genome.Nature,200,409:860~921.
  • 5[5]Gordon D,Abajian C,Green P.Consed:A graphical tool for sequence finishing.Genome Res,1998,8:195~202.
  • 6[6]Ewing B,Green P.Base-calling of automated sequencer traces using Phred.II.Error probabilities.Genome Res,1998,8:186~194.
  • 7[7]Ewing B,Hillier L,Wendl M.Base-calling of automated sequencer traces using Phred.I.Accuracy assessment.Genome Res,1998,8:175~185.
  • 8[9]Bernardi G.The isochore organization of the human genome.Annu Rev Genet,1989,23:637~661.
  • 9[10]Saccone S,De Sario A,Wiegant J,Raap A K,Della Valle G,Bernardi G.Correlations between isochores and chromosomal bands in the human genome.Proc Natl Acad Sci USA,1993,90:11929~11933.
  • 10[11]Zoubak S,Clay O,Bernard G.The gene distribution of the human genome.Gene,1996,174:95~102.

同被引文献15

  • 1樊龙江,郭兴益.从水稻基因组序列中挖掘生物信息[J].浙江大学学报(农业与生命科学版),2005,31(4):355-361. 被引量:4
  • 2Dou X. Y. , Wang Q, , Qi z. Q. , Song W. W. , Wang W. , Guo M., Zhangtt. F., ZhangZ. G., WangP., ZhengX. B. , Mo- Vam7, a conserved SNARE component involved in vacuole assem- bly, is required for growth, endocytosis, chitin distribution, ROS accumulation, and pathogenesis of Magnaporthe oryzae [ J ]. PLoS ONE, 2011,6(1) : e16439. 'i.
  • 3Gilbert M. J. , ThomtonC. R. i, Wakley G. E. , Talbot N. J.. A P - type ATPase required for rice blast disease and induction of host resistance[ J]. Nature, 2006, 440 : 535 - 539.
  • 4Ramanujam R. , Naqvi N. I.:, PdeH, a High - Affinity cAMP Phosphodiesterase, Is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae [ J ]. PLoS Pathogens, 2010,6:1-23.
  • 5IJarkJ. Y., JinJ. M., Lee Y. W., KangS. C., Lee Y. H., Rice blast fungus ( Magnaporthe oryzae) infects Arabidopsis thali- ana via a mechanism distinct from that required for the infection of rice[ J]. Plant Physi01ogy,2009,149:474 - 486.
  • 6Bemardi G.. , Isochores and the evolutionary genomics of verte- brates[J], Gene, 2000, 241: 3-17.
  • 7International human genome sequencing consortium . Initial sequencing and analysis of the human genome. Nature, 2000, 409: 860-921.
  • 8Smit A. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev, 1999, 9: 657-663.
  • 9Kenneth DR. Prevalence of congenital deficiency in serum choline-sterase. Arch Environ Health, 1997, 52:42-44.
  • 10Prall YG, Gambhir KK, ampy FR Acetylcholinesterase : an enzymatic marker of human red blood ceii aging. Life Sci, 1998,52 (3): 187.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部