期刊文献+

同尺寸矩形毛坯排样的连分数分支定界算法 被引量:21

A Continued Fractions and Branch-and-Bound Algorithm for Generating Cutting Patterns with Equal Rectangles
下载PDF
导出
摘要 在确定同尺寸矩形毛坯最优排样方式的算法中 ,连分数算法的时间效率最高 ,但所生成排样方式的切割工艺复杂 提出连分数分支定界算法 ,该算法应用连分数法确定毛坯数最优值 ,采用贴切的上界估计方法 ;在搜索过程中只保留上界不小于最优值的分支 ,遇到下界等于最优值的分支时结束搜索 实验结果表明 ,该算法的时间效率和连分数算法接近 ,并可以有效地简化切割工艺 ,生成切割工艺最简单的排样方式 最后 。 Among the algorithms for generating optimal cutting patterns with equal rectangles, the continued fractions algorithm is the most time efficient one, yet the patterns generated by it are complex to cut. This paper presents a solution that can generate the simplest pattern. The algorithm determines the optimal number of blanks by the continued fractions method, and estimates the upper bound more tightly. In the searching process, only branches of upper bounds not smaller than the optimal number are kept. The searching process ends when a branch of a lower bound equal to the optimal number is found. Experimental computations are performed to test the algorithm and the continued fractions approach. The results show that time efficiencies of the two algorithms are nearly the same, while the proposed algorithm may simplify the cutting process. It is also compared with the pattern often used in production to illustrate the potential of the approach in saving material.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第2期252-256,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 广西科学基金 (桂科基 0 2 3 60 17)资助
关键词 矩形毛坯 毛坯排样 连分数分支定界算法 上界估计 切割工艺 steel sheet 2D cutting cutting stock problem optimization
  • 相关文献

参考文献10

  • 1Cheng C H, Feiring B R, Cheng T C E. Cutting stock problem-A survey[J]. International Journal of Production Economics, 1994, 36(3): 291~305
  • 2Healy P, Creavin M, Kuusik A. An optimal algorithm for rectangle placement[J]. Operations Research Letters, 1999, 24: 73~80
  • 3Leung T W, Yung C H, Troutt M D. Applications of genetic search and simulated annealing to the two-dimensional non-guillotine cutting stock problem[J]. Computers & Engineering, 2001, 40: 201~214
  • 4Cung V D, Hifi M, Cun B L. Constrained two-dimensional cutting stock problems-A best-first branch-and-bound algorithm[J]. International Transactions in Operational Research, 2000, 7: 185~210
  • 5Dremin S Y, Zalgaller V A. About cutting of a sheet into equal rectangles[J]. Optimization, 1981, 44(27): 136~142(in Russian)
  • 6Agrawal P K. Minimizing trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts[J]. European Journal of Operational Research, 1993, 64(3): 410~422
  • 7Cui Y, Zhou R. Generating optimal cutting patterns for rectangular blanks of a single size[J]. Journal of the Operational Research Society, 2002, 53(12): 1338~1346
  • 8崔耀东,周儒荣.单一尺寸矩形毛坯排样时长板的最优分割[J].计算机辅助设计与图形学学报,2001,13(5):434-437. 被引量:17
  • 9Tarnowski A G, Terno J, Scheithauer G. A polynomial time algorithm for the guillotine pallet loading problem[J]. Information Systems and Operational Research, 1994, 32(4): 275~287
  • 10Arslanov M Z. Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles[J]. European Journal of Operational Research, 2000, 125: 239~248

二级参考文献1

  • 1Cheng C H,Int J Prod Econ,1994年,36卷,3期,291页

共引文献16

同被引文献146

引证文献21

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部