期刊文献+

PCA-DRBFN模型在精馏塔精苯干点估计中的应用 被引量:6

PCA-DRBFN Model in Application to Estimating Dry Point of Pure Benzene in Rectifying Tower
下载PDF
导出
摘要 针对PCA(PrincipalComponentsAnalysis)技术中,由于重叠信息会严重影响主成分的正确提取这一问题,提出了一种改进的数据降维处理方法·首先,利用标准化变量间的相关系数大小找到重叠信息·然后,将重叠信息进行加权综合·最后,利用改进的数据降维处理方法以及分布式网络技术,建立了基于PCA DRBFN(PrincipalComponentsAnalysis DistributedRadialBasisFunctionNetwork)的软测量模型,并将其应用到某钢厂的精苯精馏过程,对精苯干点进行估计·通过仿真证明,所建立的模型具有较好的泛化效果· An improved data dimension decreasing method is proposed to reduce the overlapped information in multivariable system,since a number of overlapped information will affect greatly the correct pick-up of PCs(Principal Components) in PCA(Principal Components Analysis). The overlapped information can be found using the correlation coefficients between standardized variables, then they are weighted and integrated altogether. An PCA-DRBFN(Principal Components Analysis-Distributed Radial Basis Function Network) based soft-sensing model is thus developed using the improved method. The model has been applied to the pure benzene rectifying process in a steel plant to estimate the dry point of pure benzene. Simulation results showed that the proposed method and developed model are both favorably versatile.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期103-105,共3页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(002013)
关键词 软测量 主成分分析(PCA) 数据降维 重叠信息 精苯精馏 径向基网络 soft-sensing principal component analysis(PCA) data dimension decreasing information overlap pure benzene rectification radial basis function network
  • 相关文献

参考文献10

  • 1刘克显,王玉涛,王师.高炉煤粉喷吹系统的动态辨识[J].东北大学学报(自然科学版),2001,22(4):366-369. 被引量:3
  • 2Mejdell T, Skogestad S. Output estimation using multiple secondary measurements: high-purity distillation[J]. Process Systems Engineering, 1993,9(10):1641-1653.
  • 3Yang S H, WANG X Z, Mcgreavy C, et al. Soft sensor based predictive control of industrial fluid catalytic cracking processes[J]. Institution of Chemical Engineers Trans Ichem E, 1998,76(5):499-508.
  • 4易灵芝,李卫平.化工生产过程中浓度类参数的软测量方法[J].兵工自动化,2000,19(4):40-42. 被引量:1
  • 5Casali A, Vallebuona G, Bustos M, et al. A soft-sensor for solids concentration in hydrocyclones[J]. Minerals Engineering, 1998,11(4):375-383
  • 6Dong D, McAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks[J]. Computer Chemical Engineer, 1996,20(65):245-257.
  • 7Georger H. Principal component analysis[M]. Newbury Park, Indian New Delhi: The Publishers of Professional Social Science, 1989.79-83.
  • 8王慧文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.157-159.
  • 9Martin G D. Consider soft sensors[J]. Chemical Engineering Process, 1997,7:66-70.
  • 10Wang X D, Luo R F, Shao H H. Designing a soft sensor model for a distillation column with the fuzzy distributed radial basis function neural network[A]. Proc IEEE 35th Conf[C]. Kobe:The Publishers of Society of Instrument and Control Engineers, 1999.1714-

二级参考文献6

  • 1方崇智 萧德云.过程辩识[M].北京:清华大学出版社,1988..
  • 2高以成.谷氨酸发酵过程的模型化和参数估计[J].生物工程学报,1985,1(3).
  • 3[2]G L Goodwin.Adaptive Filtering Prediction and Control[J].Prentice-Hall.1984.
  • 4邓自立.多变量多步自校正递推预报及其应用[J].自动化学报,1983,(19):241-247.
  • 5李明忠,王福利.一类非线性系统迭代优化神经网络控制器[J].东北大学学报(自然科学版),1998,19(2):191-194. 被引量:3
  • 6金锋,许会,颜华,王师.气/固两相流相浓度传感器[J].东北大学学报(自然科学版),1999,20(1):25-28. 被引量:12

共引文献22

同被引文献47

  • 1桑海峰,王福利,何大阔,张大鹏,何建勇.基于多支持向量机的诺西肽发酵中菌体浓度软测量[J].系统仿真学报,2006,18(7):1983-1986. 被引量:6
  • 2张大鹏,王福利,何建勇,何大阔,林志玲,常玉清.基于诺西肽分批发酵的过程建模[J].系统仿真学报,2006,18(8):2311-2313. 被引量:4
  • 3Yan W W, Shao H H, Wang X F. Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection[J]. Computers and Chemical Engineering, 2004,28 (10): 1489-1498.
  • 4Suykens J A K. Nonlinear Modeling and Support Vector Machine [ A ]. In Proc of the IEEE Instrumentation and Measurement Technology Conf[C ].Budapest: Hungary, 2001: 287-294.
  • 5Mejdell T, Skogestad S. Output Estimation Using Multiple Secondary Measurements: High-purity Distillation[J]. Process Systems Engineering , 1993, 9(10):1641-1653.
  • 6Yang S H,Wang X Z, Mcgreavy C, et al. Soft Sensor Based Predictive Control of Industrial Fluid Catalytic Cracking Processes [ J ]. Institution of Chemical Engineers Trans IchemE, 1998, 76(5): 499-508.
  • 7Cortes C, Vapnik V. Support-vector Networks[J].Machine Learning, 1995, 20(1) :273-297.
  • 8Vapnik V N. The Nature of Statistical Learning Theory [M]. 1st ed. New York: Springer-Verlag,1995.
  • 9Mejdell T, Skogestad S. Output estimation using multiple secondary measurements:high-purity distillation[J].Process Systems Engineering, 1993,9(10):1641-1653.
  • 10Yang S H, Wang X Z, Mcgreavy C, et al. Soft sensor based predictive control of industrial fluid catalytic cracking processes[J].Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, 1998,76(5):499-508.

引证文献6

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部