期刊文献+

彩色扫描仪的特征化 被引量:15

Characterization of color scanners
下载PDF
导出
摘要 阐述了扫描仪特征化的原理和方法。采用多项式回归和人工神经网络技术,建立了扫描仪记录的RGB信息和原影像CIEXYZ及CIELAB色度信息之间的非线性对应关系。对4个常用扫描仪,实验得到了合理的多项式和人工神经网络结构。发现多项式项数为10较为合适,达到的CIELAB平均色差和最大色差分别在1.6~3.0和8~13个色差单位之间;6个隐含层神经元为人工神经网络较为合理的结构,达到的CIELAB平均色差和最大色差分别在1.4~2.6和6~8个色差单位之间。实验结果表明,对常用扫描仪的特征化,可采用多项式回归或人工神经网络技术,其中人工神经网络技术精度较高。 The nonlinear relationship between the scanner RGB signals and original image CIEXYZ or CIELAB values were obtained using the polynomial regression and the artificial neural network procedures. The reasonable structures of the polynomial and the artificial neural network were found for four color scanners. The better number of polynomial terms was 10, reaching the accuracy of 1.6~3.0 CDU (color difference unit) CIELAB average CD (color difference) and 8~13 CDU CIELAB maximal CD. And the reasonable number of hidden cells of the network was 6, reaching the accuracy of 1.4~2.6 CDU CIELAB average CD and 6~8 CDU CIELAB maximal CD. The test results showed that the polynomial regression and the artificial neural network techniques could be used to characterize commonly used color scanners, and the latter has a higher accuracy.
出处 《光学精密工程》 EI CAS CSCD 2004年第1期15-20,共6页 Optics and Precision Engineering
关键词 彩色扫描仪 特征化 色差 多项式回归 人工神经网络 color scanner characterization color difference polynomial regression artificial neural network
  • 相关文献

参考文献11

  • 1任智斌,隋永新,杨英慧,杨怀江.以图像为载体的最大意义位(MSB)信息隐藏技术的研究[J].光学精密工程,2002,10(2):182-187. 被引量:24
  • 2于前洋.作为图像传感器的CCD、ICCD和IRCCD[J].光学精密工程,1994,2(5):8-16. 被引量:10
  • 3JOHNSON T. Methods for characterizing colour scanners and digital cameras[J]. Displays, 1996, 16(4): 183-191.
  • 4KANG H R. Color scanner calibration[J]. Imaging Sci Technol, 1992, 36(2): 162-170.
  • 5HUNG P C. Colorimetric calibration in electronic imaging devices using a look-up table model and interpolations[J]. Electron Imaging, 1993, 2(1): 53-61.
  • 6VRHEL M J, TRUSSELL H J. Color scanner calibration via a neural network[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999,(6): 3465-3468.
  • 7MACDONALD L W. Developments in color management systems[J]. Displays, 1996, 16(4): 203-211.
  • 8MAHY M, VAN EYCKDEN L, OOSTERLINCK A. Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV[J]. Color Res Appl, 1994,19(2): 105-121
  • 9SHARMA G. TRUEESLL H J. Digital color imaging[J]. IEEE Transactions on Image Processing, 1997, 6(7): 901-931.
  • 10RODRIGUEZ M A, STOCKHAM T G. Producing colorimetric data from densitometric scanners[J].SPIE, 1993,1913: 413-418.

二级参考文献11

  • 1[1]Akrout N,Prost R, Goutte R.A fast algorithm for vector quantization in radiological image compression[J].SPIE.1993,1897:259-290.
  • 2[2]Sangeeta R,Kenneth R, Allen G.Constrained-storage vector quantization with a universal code book[J].IEEE transactions on image processing.June, 1998,7(6):785-793.
  • 3[3]Andy C H Teresa H M.Multidimensional rotations for robust quanzation of image data[J].IEEE transactions of image processing.1998,7(1):1-12.
  • 4[4]Heckbert P.Color image quantization for frame buffer display[A].In Proceedings of Siggraph'82[C].ACM, New York, 1982.297-307.
  • 5[5]Orchard M, Bounman C.Color quantization of images[J].IEEE Trans.On Signal, 1991, 39(12): 2677-2690.
  • 6[6]Linde Y, Buzo A,Gray R.An algorithm for vector quantizer design[J].IEEE Transactions on Communications, 1980, 28(1): 84-95.
  • 7[7]Wu X.Color quantization by dynamic programming and principal analysis[J].ACM Transactions on Graphics, 1992,11(4): 348-372.
  • 8[8]Dekker A.Kohonen neural networks for optimal colour quantization[J].Network: Computation in Neural Systems, 1994,5:351-367.
  • 9[9]Gentile R S, Walowit E,Allebach J P.Quantization and multilevel halftoning of color images for near original image quality[J].SPIE, 1990, 1249: 249-260.
  • 10[10]Floyd R W,Steinberg L.An adaptive algorithm for spatial grayscale[J].SID, 1976, 17(2): 75-77.

共引文献32

同被引文献92

引证文献15

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部