期刊文献+

高速彩色线阵CCD三色错位修正方法的研究 被引量:2

Correction of high-speed tri-CCD color disorder
下载PDF
导出
摘要 为了改善图像采集的质量,通过分析高速彩色线阵CCD三色错位产生的机理,提出了三色错位的几种修正方法:棱镜分光法、异步时钟控制曝光法、通过软件修正法。采用棱镜分光可以实现对红色、绿色和蓝色分量同时感光,避免颜色错位;改变现有CCD外围电路,通过异步时钟控制曝光,即调整CCD曝光的先后次序和延迟时间,实现错位修正;基于数据冗余与数据重新定位技术,通过软件达到实时修正色彩错位的目的。该方法以BASLERL301bc彩色线阵CCD摄像机为例得到验证,图像质量改善显著。 In order to improve the quality of image acquired, the causes of high-speed tri-CCD color disorder were analyzed, and several approaches including prismatic decomposition, exposure controlled by asynchronous trigger clock, and correction by software, are suggested for correction of high-speed tri-CCD color disorder. A prism splitter can be used to enable tri-CCD to receive red, green and blue beams separately so that color disorder can be avoided. An asynchronous clock can be used to control the exposures so that the sequence and delay of tri-CCD exposures can be adjusted to avoid color disorder. Real-time correction of color disorder can be achieved through software modification using data redundancy and data relocation technology. Substantiations made with a BASLER L301bc tri-CCD showed that the quality of images was significantly improved.
出处 《光学精密工程》 EI CAS CSCD 2004年第1期107-112,共6页 Optics and Precision Engineering
基金 国家计委基金资助项目(计高技[2000]1882号国家高科技产业化工业过程自动化专项"企业集成自动化系统
关键词 图像处理 彩色线阵CCD 色彩错位 棱镜分光 异步时钟 数据冗余 image processing color tri-CCD color disorder prism splitter asynchronous clock data redundancy
  • 相关文献

参考文献5

二级参考文献11

共引文献17

同被引文献15

  • 1陈文涛,刘永贵,曹晓莉.平列式线阵彩色CCD摄像机的色彩偏移与校正[J].半导体光电,2006,27(4):478-480. 被引量:4
  • 2刘铂,卿粼波,吴晓红,滕奇志.用于岩心扫描的彩色线阵CCD图像采集系统[J].计算机应用,2007,27(1):246-248. 被引量:2
  • 3VAPNIK V N. The Nature of Statistical Learning Theory[M]. Springer-Verlag, 1995.
  • 4JIA J, ZHANG H R. A Fast Learning Algorithm for One-Class Support Vector Machine[C]. Proc IEEE ICNC. 2007.
  • 5PLATT J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization [M]. Cambridge, MA:MIT Press, 1999:185-208.
  • 6OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machines[C]. Proc IEEE NNSP. 97, Amelia Island, FL, 1997: 276-285.
  • 7SCHOLKOPF B, PLATT J. Estimating the sup-port of a high-dimensional distribution[J]. Neural Computation, 2001,3(7) : 1443-1471.
  • 8NELLO C. An introdution to Suppot Vector Machines and Other Kernel-Based Learning Methods [ M ]. Cambridge: Cambridge University Press, 2000.
  • 9http://www. csie. ntu. edu. tw/- cjlin/libsvm/ [oi.].
  • 10Basler AG. BASI.ER 1.301 kc installation Guide[Z]. 2000.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部