期刊文献+

含平方项非线性动力系统的分岔研究 被引量:2

Bifurcation Analysis of Non-linear Dynamic System with a Quadratic Term
下载PDF
导出
摘要 用规范形理论共轭算子法研究了含平方项非线性系统,获得了方程的稳态渐近解.然后用普适开折理论分析了含平方项非线性Duffing系统的分岔响应方程,分析了余维2分岔,得到了转迁集和分岔图.得到的结果与数值模拟结果相一致. The normal form theory was extended to study the non-linear dynamical system with a quadratic term. The unknown variable frequency ω_1 was defined as the basic frequency of the weakly nonlinear system with a quadratic term, and the nonlinear transformation was appropriately supposed. With the present method, the non-linear one-degree-of-freedom oscillators′ steady periodic solutions can be obtained easily, and the transition set and bifurcation diagram can be achieved by the universal unfolding theory. The bifurcation of codimension two for the nonlinear system was analysed. The results obtained by the method coincided very well with those obtained by numerical integration for the system. It is obvious that the proposed normal form method is very easy, simple and valid.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第1期99-102,共4页 Journal of Hunan University:Natural Sciences
基金 湖南省自然科学基金资助项目(01JJY2007)
关键词 分岔 规范形 普适开折 平方非线性 bifurcation normal form universal unfolding quadratic nonlinearity
  • 相关文献

参考文献8

  • 1唐驾时,李克安,等.Bifurcations of a parametrically excited oscillator with strong nonlinearity[J].Chinese Physics B,2002,11(10):1004-1007. 被引量:5
  • 2JEZEQUEL L, LAMARQUE L H. Analysis of nonlinear dynamical systems by the normal form theory[J]. Journal of sound and vibration,1991,149(3):429-459.
  • 3NAYFEH A H. Method of normal forms[M]. New York:John wiley and sons, 1993.
  • 4ZHANG W Y, HUSEYIN K. On the computation of the coefficients associated with high order normal forms[J]. Journal of sound and vibration, 2000,232(2):525-540.
  • 5ZHANG W Y, HUSEYIN K , CHEN Y S. A new approach for obtaining normal forms of non-linear systems [J]. Journal of sound and vibration, 1998,210(5):609-625.
  • 6ZHANG Q C, LEUNG A Y.Normal form of double hopf bifurcation in force oscillators [J]. Journal of sound and vibration, 2000,231(4):1057-1069.
  • 7LEUNG A Y T, ZHANG Q C. Higher order normal form and period averaging [J]. Journal of sound and vibration, 1993, 217(5):795-806.
  • 8LAMARQUE C H, MALASOMA J M.Analysis of mechanical systems with slowly varying parameters by normal form method[J]. Journal of sound and vibration, 1993, 160(2):364-369.

共引文献4

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部