期刊文献+

基于遗传算法的图关联着色算法 被引量:3

Algorithm for Graph Incidence Coloring Base on Hybrid Genetic Algorithm
下载PDF
导出
摘要 图的着色算法是一种典型的NP 完全问题。给出了一种用于图的关联着色的遗传算法。遗传算法用于进行全局搜索 ,从而有效的查找解空间。文中对关联色数为 6的一个图进行了仿真实验 ,给出了该图的关联色数以及 4种 6 关联着色。用本文提出的算法 ,得到了完全图、完全多部图的关联色数。实验结果表明 ,本文设计的遗传算法可以很好的对关联着色猜想进行求解 ,获得问题的高质量的解。 The problem coloring on a graph is a NP-hard problem. We presents a genetic algorithm for the incidence coloring on graphs. Genetic algorithms are used to perform local global exploration among a population, while heuristics methods are used to perform local exploitation around the chromosome. The paper gives a simulating about a graph with incidence coloring number 6, and obtains the incidence coloring number of the graph, also obtains four different incidence colorings on the graph. Using the algorithm presented by this paper, we get the incident coloring number of the complete graphs and of the complete m-partite graphs. The experimental results indicate that the incident coloring number of graphs can be obtained by this genetic algorithm, and the solutions with excellent quality of problem can be obtained.
出处 《工程数学学报》 CSCD 北大核心 2004年第1期41-47,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金项目项目 (6 0 1 74 0 4 7和6 0 2 74 0 2 6 )
关键词 关联着色 关联色数 关联图 遗传算法 incidence coloring incidence coloring number incidence graph genetic algorithm
  • 相关文献

参考文献2

二级参考文献1

  • 1Charles Fleurent,Jacques A. Ferland. Genetic and hybrid algorithms for graph coloring[J] 1996,Annals of Operations Research(3):437~461

共引文献35

同被引文献13

  • 1[3]Bean J.Genetic algorithms and random keys for sequencing and optimization.ORSA Journal on Computing,1994,6(2):154-160
  • 2WERRA D. Restricted Coloring Models for Timetabling Discrete Mathematics [J]. 1997, 1656-1666 ( 15 ): 161-170.
  • 3殷剑宏 吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2004.152.
  • 4SOLOTOREVSKY G, GUDES E, MEISELS A. RAPS: a Rule-based Language for Specifying Resource Allocation and Time-tabling Problems Knowledge and Data Engineering[J]. 1994,6(5):681-697.
  • 5KENNETHHROSEN.离散数学及其应用(第4版)[M].北京:机械工业出版社,2002.495.
  • 6Bean J.Genetic algorithms and random keys for sequencing and optimization[J].0RSA Journal on Computing,1994,6(2):154-160.
  • 7Christoforos E.Zoumas,Anastasios G.Bakirtzis,John B.Theocharis,et al.A Genetic algorithm solution approach to the hydrothermal coordination problem[J].IEEE transactions on power systems,2004,19(2):1356-1364.
  • 8宫赤坤,毛罕平.温室温湿度遗传模糊神经网络控制仿真研究[J].江苏理工大学学报(自然科学版),2000,21(6):35-37. 被引量:10
  • 9唐勇,唐雪飞,王玲.基于遗传算法的排课系统[J].计算机应用,2002,22(10):93-94. 被引量:94
  • 10杜尚丰,李迎霞,马承伟,陈青云,杨卫中.中国温室环境控制硬件系统研究进展[J].农业工程学报,2004,20(1):7-12. 被引量:108

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部