期刊文献+

变截面平面梁单元的双线性模型 被引量:5

A bi-linear model of non-uniform plane beam element
下载PDF
导出
摘要 从变形体虚功原理出发,推导了平面任意变截面梁单元的刚度阵和质量阵;从用户使用方便简单的角度提出了一种双线性变截面模型,在此基础上得到了梁单元的刚度阵、质量阵以及机动法求影响线公式的显式表达式.算例表明双线性变截面梁单元符合位移有限元的特点,在应用方便情况下能有效地提高精度,具有一定的实用性. By applying the virtual work principle, the stiffness and mass matrices of an arbitrary non-uniform plane beam element are derived in the paper. For the simplicity and convenience in application, a bi-linear non-uniform plane beam model is recommended. Its stiffness matrix, mass matrix and influence lines by kinematic method can be formulized explicitly. A numeric example demonstrates its accuracy in comparison with the analytic results and indicates that its results coincide with those of the displacement finite element methods.
出处 《重庆交通学院学报》 2004年第2期21-25,共5页 Journal of Chongqing Jiaotong University
关键词 变截面 梁单元 刚度阵 质量阵 影响线 non-uniform beams beam elements stiffness matrices mass matrices influence lines
  • 相关文献

参考文献2

二级参考文献15

  • 1张元海.斜交梁单元及其应用[J].兰州铁道学院学报,1996,15(3):5-11. 被引量:2
  • 2GBJ17-88.钢结构设计规范[S].[S].,..
  • 3邹风梧 刘中柱 等.积分表汇编[M].北京:宇航出版社,1992.163,168,151.
  • 4J.S.普齐米尼斯基(著),王德荣,等(译校).矩阵结构分析理论[M].北京:国防工业出版社,1960.
  • 5Xian-Ling Zhao,郭彦林.21世纪轻型钢结构的发展及展望[A].1998 中国土木工程学会第八界年会论文集[C].
  • 6S Timoshenko. Theory of elastic stability[M]. McGram-Hill Bood Company,1936.
  • 7G C Lee, M L Morrel and R L Ketter. Design of tapered Members. Welding Research Council Bulletin[J].No,173 June 1972.
  • 8马文华.杆件结构计算原理及应用程序[M].上海:上海科学技术出版社,1982.
  • 9B A Boley. On the accureace of the Bernoulli-Euler theory for beams of variable section[J]. Journal of Applied Mechanics, 1963,(30):373~378.
  • 10DBJ 08-68-97,轻型钢结构设计规程[S].

共引文献17

同被引文献29

  • 1李建成.阶梯变截面超静定梁内力变形的通用解析法[J].纺织高校基础科学学报,2004,17(2):138-142. 被引量:1
  • 2赵斌,王正中.楔形变截面梁单元力学模型的研究[J].钢铁研究,2002,30(5):28-30. 被引量:2
  • 3杨玉华.用单元算子法求变截面梁的变形[J].吉林工学院学报(自然科学版),1996,17(1):33-37. 被引量:1
  • 4谢靖中.变截面梁预应力计算的积分算子法[J].工程力学,2006,23(A01):46-51. 被引量:5
  • 5MarkPriestley.面向对象设计的UML实践[M].北京:清华大学出版社,2000..
  • 6GIRGIN K. Free vibration analysis of non-cylindrical helices with variable cross-section by using mixed FEM[J]. Journal of Sound and Vibration, 2006, 297(3-5) :931-945.
  • 7ROMANO F, ZINGONE G. Deflections of beams with varying rectangular cross section[J]. Journal of Engineering Mechanics, 1992, 118 (10) : 2128- 2134.
  • 8FRANCIOSI C, MECCA M. Some finite elements for the static analysis of beams with varying cross section[J]. Computers and Structures, 1998,69(2): 191-196.
  • 9TAUCER F F, SPACONE E, FILIPPOU F C. A fiber bean-column element for seismic response analysis of reinforced concrete structures[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1991, Report No. UCB/EERC-91/17.
  • 10SPACONE E, FILIPPOU F C, TAUCER F F. Fiber beam-column model for non-linear analysis of R/C frames: Part I. Formulation[J]. Earthquake Engineering and Structural Dynamics, 1996,25(7) : 711-725.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部