摘要
一个冠状系统(coroniod system)G被称作是k-可覆盖的,如果对任何k个互相邻接的六角形,从G中删去这k个六角形以及相关联的边后得到的子图至少含有一个完美匹配,本文得到一个简捷的方法,由此可以确定是否存在k-可覆盖的冠状系统,并且确定出了这些k-可覆盖的冠状系统。
A coronoid system(CS)G is said to be k-coverable if for any k,mutually disjunct hexagons the sub-
graph obtained from G by deleting these k hexagons together with their incident edges has at least one perfect
matching.In this paper a simple method is developed which allows to determine whether or not there exist k
-covetable CSs with exactly h hexagons and to find all such k-coverable CSs.
出处
《新疆大学学报(自然科学版)》
CAS
1992年第1期16-21,共6页
Journal of Xinjiang University(Natural Science Edition)