摘要
讨论了L型区域Laplace算子的各个特征函数在凹点邻域的性态,得到九点差分格式的各个近似特征值的误差估计,并证明了除第一特征值外,其余特征值皆可使用已有的校正法取得更高的精度.所得结果不仅更正了对L型区域第一特征值的渐进展开之猜想,而且解决了其数值解为何是振荡的这一难题.
Discussed the behavior at the reentrant corner of eigenfunctions for Laplace operator on the L-shaped region and presents error estimates and high accuracy corrections of the approximate eigenvalues with the nine-point difference scheme. Proved the methods of Lü Tao is correct, by which the authors gained higher accuracy, and are efficient except the first eigenvalue. Moreover, the result of this paper not only makes corrections to the hypotheseize of asympotic expansion of the first eigenvalue on L-shaped region in, but also explains the phenomena of vibrancy of approximation solution which have puzzled a lot of mathematicians for a long time.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第1期40-45,共6页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10171073)
关键词
特征值
凹角域
高精度校正
eigenvalue
a region with reentrant corner
high-precision correction