期刊文献+

一类脉冲时滞双曲型方程解的振动性(英文) 被引量:2

Oscillation Behavior of Solutions for a Class of Delay Impulsive Hyperbolic Functional Differential Equations
下载PDF
导出
摘要 利用Robin特征值方法,对如下的脉冲时滞方程utt(x,t)=a(t)Δu(x,t)+b(t)Δu(x,t-δ),-h(x,t)u(x,t-σ)-q(x,t)f[u(x,t-ρ)],u(x,t+k)-u(x,t+k)=cku(x,tk),ut(x,t+k)-ut(x,t+k)=ckut(x,tk),  t≠tk,k=1,2,3,…,k=1,2,3…的振动性进行了讨论,并得到了方程振动的充分条件. The authors discussed the oscillation behavior for impulsive hyperbolic functional differential equations with two different boundary conditions, and obtained several oscillation criteria.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第1期46-51,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 振动性 Robin边值条件 Dirichlet边值条件 oscillation Robin boundary condition Dirichlet boundary condition
  • 相关文献

参考文献6

  • 1[1]Ye Q X, Li Z Y. Introduction to reaction-differential equations[M]. Beijing:Beijing Science Press, 1990.
  • 2[2]Wang P G, Ge W G. Certain second-order differential inequality of neutral type[J]. Appl. Math. Lett, 2000, 13:43-50.
  • 3[3]Zhang Y Z, Zhao A M, Yan J R. Oscillation criteria for impulsive delay differential equations[J]. J. Math. Anal. Appl, 1997, 205:464-470.
  • 4[4]Bainov D, Kdzislaw Z, Mincher E. Monotone iterative methods for impulsive hyperbolic differential functional equations[J]. J. Comput. Appl. Math, 1996, 70:329-347.
  • 5[5]Bainov D, Cui B T, Minchev E. Forced oscillation of solutions of certain hyperbolic equations of neutral type[J]. J. Comput. Appl. Math, 1996,72:309 -318.
  • 6[6]Deng L H. Oscillation criteria of solutions for a class of impulsive parabolic differential equations[J]. J. Pure Appl. Math, 2002, 33(7):1147-1153.

同被引文献16

  • 1CuiChenpei,ZouMin,LiuAnping,XiaoLi.OSCILLATION OF NONLINEAR IMPULSIVE PARABOLIC DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS[J].Annals of Differential Equations,2005,21(1):1-7. 被引量:20
  • 2薛秋条,徐德义,刘安平.非线性脉冲时滞双曲偏微分方程的振动性[J].武汉理工大学学报,2005,27(6):52-54. 被引量:8
  • 3Luo Jiaowan.Oscillation of hyperbolic partial differential equations with impulsives[J].Appl Math Comput,2002,133(2/3):309.
  • 4Liu Anping,Xiao Li,Liu Ting.Oscillation of nonlinear impulsive hyperbolic equations with several delays[J/OL].Electronic Journal of Differential Equations,2004,No.24.http://ejde.math.txstate.edu.
  • 5Lakshmikantham V,Bainov D D,Simeonov P S.Theory of impulsive differential equations[M].Singapore:WorldScientific,1989.
  • 6Erbe L H, Freedman H I, LIU Xin-zhi, et al. Comparison Principles for Impulsive Parabolic Equations with Applications to Models of Single Species Growth [J]. J Austral Math Soc, 1991, B32(4) : 382-400.
  • 7Bainov D, Kamont Z, Minchev E. Periodic Boundary Value Problem for Impulsive Hyperbolic Partial Differential Equations of First Order [J]. Appl Math Comput, 1994, 80(1 ) : 1-10.
  • 8Bainov D, Kamont Z, Minchev E, et al. Asymptotic Behaviour of Solutions of Impulsive Somilinear Parabolic Equations[J]. Nonlinear Analysis, 1997, 30: 2725-2734.
  • 9LUO Jiao-wan. Oscillation of Hyperbolic Partial Differential Equations with Impulsives [J]. Appl Math Comput, 2002,133(2) : 309-318.
  • 10LIU An-ping, XIAO Li, LIU Ting. Oscillation of Nonlinear Impulsive Hyperbolic Equations with Several Delays [ J ].Electronic Journal of Differential Equation, 2004, 2004 (24) : 1-6.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部