期刊文献+

切伦柯夫相互作用中分段式慢波结构与均匀慢波结构的比较研究 被引量:2

Comparative investigation between the uniform slow-wave structure and the sectional slow-wave structure in Cerenkov interaction
下载PDF
导出
摘要  分析了切伦柯夫束波相互作用中使用单段慢波结构的缺点。指出在分段式慢波结构中,漂移段及其两端的慢波结构组成一Bragg谐振腔,当漂移段长度合适时,根据渡越时间效应理论,这种结构能减小调制束中电子的速度分散,提高束波转化效率。通过粒子模拟方法,比较了均匀慢波结构与分段式慢波结构中束波相互作用的物理图像,验证了理论分析结果,并说明了后者有束密度群聚充分,束电子速度分散小,产生微波功率高、频谱质量好,最佳工作电流大,输入电功率高等优点。 The disadvantages of the uniform slow-wave structure in Cerenkov beam-wave interaction are analyzed. It is put forward that in the sectional slow-wave structure, the drift tube and the two section SWSs of its ends comprise a Bragg resonant cavity, which can reduce the energy dispersal of the modulated beam electrons due to the transit time effect when the length of the drift tube is well chosen, thus to enhance the beam-wave energy conversion efficiency. By means of the PIC simulation, physical graphs of beam-wave interaction in the uniform slow-wave structure case and in the sectional slow-wave structure case are compared, and the simulation results confirm that the later has several advantages, such as more effective beam-wave energy conversion efficiency, better spectrum quality, and higher input electrical power.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2004年第3期345-348,共4页 High Power Laser and Particle Beams
基金 国家863计划项目资助课题
  • 相关文献

参考文献8

  • 1张军,钟辉煌,杨建华,舒挺.具有谐振腔的多波切伦柯夫振荡器的粒子模拟[J].强激光与粒子束,2003,15(1):85-88. 被引量:17
  • 2Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation[J]. Phys Fluids, 1985, 28(9): 2882-2892.
  • 3Shffler D, Nation J A, Kerslick G S. A high-power traveling wave tube amplifier[J]. IEEE Trans Plasma Sci, 1990, 18(3): 546-550.
  • 4Baruch L, Thomas M A, Alexander N V, et al. High-efficiency relativistic BWO: theory and design[J]. IEEE Trans Plasma Sci, 1996, 24(3): 843-851.
  • 5Larald D M, Edl S, Raymond WL, et al. Efficiency enhancement of high power vacuum BWO′s using nonuniform slow wave structure[J]. IEEE Trans Plasma Sci, 1994, 22(5): 554-565.
  • 6Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov generators[J]. IEEE Trans Plasma Sci, 1990, 18(3): 525-536.
  • 7Bugaev S P, Cherepenin V A, Kanavets V I, et al. Investigation of a millimeter-wavelength-range relativistic diffraction generator[J]. IEEE Trans Plasma Sci, 1990, 18(3): 518-524.
  • 8Chong C K, Mcdermott D B, Razeghi M M, et al. Bragg reflectors[J]. IEEE Trans Plasma Sci, 1992, 20(3): 393-402.

二级参考文献8

  • 1Bugaev S P,Kanavets V I, Kurkin M G, et al. Relativistic multiwave Cerenkov generator[J]. Sov Tech Phys Lett, 1983, 9(11):596-597.
  • 2Benford J, Swegle J. High-power microwaves[M]. USA : Artech House Inc, 1992.
  • 3Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov generators[J]. IEEE Trans Plasma Sci, 1990, 18(3):525-536.
  • 4Pikunov V M. Linear theory of the relativistic superdimensional Cerenkov devices[A]. SPIE[C]. 1993, 2154:359-367.
  • 5Kanavets V I, Nifanov A S, Slepkov A I. Relativistic Multiwave Cerenkov Generator[A]. Proc of 9th International Conference on High Power Particle Beams[C]. Washington DC: NRL, 1992. 211-218.
  • 6Gunin A V, Klimov A I, Korovin S D, et al. Relativistic X-band BWO with 3GW output power[J]. IEEE Trans Plas Sci, 1998, 26(3):326-330.
  • 7Vlasov A N, Ilyin A S, Carmel Y. Cyclotron effects in RBWOs operating at low magnetic fields[J]. IEEE Trans Plas Sci, 1998, 26(3):605-614.
  • 8范菊平,刘国治,陈昌华,宋志敏.带有反射腔的相对论返波管的数值模拟[J].强激光与粒子束,2002,14(1):103-106. 被引量:13

共引文献17

同被引文献21

  • 1张扬,陈济轮,李森,张昆,钟晓红,马宁.典型微结构的微细电火花加工工艺研究及工程应用[J].航天制造技术,2013(5):1-4. 被引量:4
  • 2张军,钟辉煌.高功率O型慢波器件的纵向模式选择研究[J].物理学报,2005,54(1):206-210. 被引量:17
  • 3Friedman M,Krall J,Lau Y Y,et al.Efficient generation of multi-gigawatt RF power by a klystron-like amplifier[J].Rev Sci Instrum,1990,61(1):171-176.
  • 4Haworth M,Baca G,Benford J,et al.Significant pulse-lengthening in a multigigawatt magnetically insulated transmission line oscillator[J].IEEE Trans on Plasma Sci,1998,26(2):312-318.
  • 5Hahn K,Schamiloglu E.Long-pulse relativistic backward wave oscillator operation utilizing a disk cathode[J].IEEE Trans on Plasma Sci,2002,30(3):235-239.
  • 6Korovin S D,Mesyats G A,Pegel I V,et al.Pulsed width limitation in the relativistic backward wave oscillator[J].IEEE Trans on Plasma Sci,2000,28(3):485-491.
  • 7Agee F J.Evolution of pulse shortening research in narrow band,high power microwave sources[J].IEEE Trans on Plasma Sci,1998,26(3):235-240.
  • 8Hegeler F,Schamiloglu E,Korovin S D,et al.Recent advance in the study of a long pulse relativistic backward wave oscillator[C]//Proc 12th IEEE Int Pulsed Power Conf.1999:825-828.
  • 9Gunin A V,Landl V F,Korovin S D,et al.Experimental studies of long-lifetime cold cathodes for high-power microwave oscillators[J].IEEE Trans on Plasma Sci,2000,28(3):537-541.
  • 10Polevin S D,Korovin S D,Kovalchuk B M,et al.Pulse lengthening of S-band resonant relativistic BWO[C]//13th International Symposium on High Current Electronics.2004:246-249.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部