期刊文献+

Optimal Boundary Control for a Parabolic and Hyperbolic Coupled System

一类由抛物-双曲耦合组支配的边界最优控制问题(英文)
下载PDF
导出
摘要 We discuss the third boundary-value optimal control problem governed by a parabolic and hyperbolic coupled system. We establish the existence of the optimal control and prove that the optimal control is bang-bang. 本文讨论了一类由抛物-双曲耦合组支配的第三边值最优控制问题.证明了该问题最优控制的存在性及其bang-bang性质.
作者 柯媛元 杨伟
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第1期29-36,共8页 数学研究与评论(英文版)
基金 Doctoral Program Foundation of the Education Ministry of China(20030183010).
关键词 third boundary value parablic-hyperbolic system optimal control bangbang. 第三边值 抛物-双曲耦合组 最优控制 bang-bang bang-bang性质
  • 相关文献

参考文献12

  • 1[1]FRIEDMAN A, HUB. Optimal control of a chemical vapor deposition reactor [J]. Journal of Optimization Theory and Applications, 1998, 97(3): 623-644.
  • 2[2]FRIEDMAN A, HUB. A nonstationary multi-scale oscillating free boundary for the Laplace equation [J]. Journal of Differential Equations, 1997, 137(1): 119-165.
  • 3[3]AUBIN J P. Un theoreme de compacite [J]. Comptes Rendus de l'Academy de Sciences de Paris, 1963, 265:5042-5045.
  • 4[4]BELYAEV A G. On Singular Perturbations of Boundary Problems [D]. Ph. D. Thesis, Moscow State University, 1990. (In Russian)
  • 5[5]WU Z Q, ZHAO J N, YIN J X. et al. Nonlinear Diffusion Equation [M]. World Scientific,Singapore, 2001.
  • 6[6]MEZA J C, PLANTENGA T D. Optimal Control of a CVD Reactor for Prescribed Temperature Behavior [R]. SANDIA Report 95-8224, UC-406, 1995.
  • 7[7]GOBBERT M K, RINGHOFER C. An asymptotic analysis for a model of chemical vapor deposition on a micro- structure surface [J]. SIAM Journal on Applied Mathematics, 1998,58(3): 737-752.
  • 8[8]GOBBERT M K, CALE T S, RINGHOFER C. One Approach to Combining Equipment Soale and Feature Scale Models [C]. Proceedings of the 187th Meeting of the Electrochemical Society, Reno, Nevada, 1995, 553-563.
  • 9[9]FRIEDMAN A. Mathematics in Industrial Problem [M]. Part 9, Institute for Mathematics and Its Applications, Springer Verlag. New York, 1997, 88.
  • 10[10]FRIEDMAN A, HU B, LIU Y. A boundary value problem for the Poisson equation with multi-scale ocillating boundary [J]. J. Differential Equations, 1997, 137(1): 54-93.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部