Optimal Boundary Control for a Parabolic and Hyperbolic Coupled System
一类由抛物-双曲耦合组支配的边界最优控制问题(英文)
摘要
We discuss the third boundary-value optimal control problem governed by a parabolic and hyperbolic coupled system. We establish the existence of the optimal control and prove that the optimal control is bang-bang.
本文讨论了一类由抛物-双曲耦合组支配的第三边值最优控制问题.证明了该问题最优控制的存在性及其bang-bang性质.
基金
Doctoral Program Foundation of the Education Ministry of China(20030183010).
参考文献12
-
1[1]FRIEDMAN A, HUB. Optimal control of a chemical vapor deposition reactor [J]. Journal of Optimization Theory and Applications, 1998, 97(3): 623-644.
-
2[2]FRIEDMAN A, HUB. A nonstationary multi-scale oscillating free boundary for the Laplace equation [J]. Journal of Differential Equations, 1997, 137(1): 119-165.
-
3[3]AUBIN J P. Un theoreme de compacite [J]. Comptes Rendus de l'Academy de Sciences de Paris, 1963, 265:5042-5045.
-
4[4]BELYAEV A G. On Singular Perturbations of Boundary Problems [D]. Ph. D. Thesis, Moscow State University, 1990. (In Russian)
-
5[5]WU Z Q, ZHAO J N, YIN J X. et al. Nonlinear Diffusion Equation [M]. World Scientific,Singapore, 2001.
-
6[6]MEZA J C, PLANTENGA T D. Optimal Control of a CVD Reactor for Prescribed Temperature Behavior [R]. SANDIA Report 95-8224, UC-406, 1995.
-
7[7]GOBBERT M K, RINGHOFER C. An asymptotic analysis for a model of chemical vapor deposition on a micro- structure surface [J]. SIAM Journal on Applied Mathematics, 1998,58(3): 737-752.
-
8[8]GOBBERT M K, CALE T S, RINGHOFER C. One Approach to Combining Equipment Soale and Feature Scale Models [C]. Proceedings of the 187th Meeting of the Electrochemical Society, Reno, Nevada, 1995, 553-563.
-
9[9]FRIEDMAN A. Mathematics in Industrial Problem [M]. Part 9, Institute for Mathematics and Its Applications, Springer Verlag. New York, 1997, 88.
-
10[10]FRIEDMAN A, HU B, LIU Y. A boundary value problem for the Poisson equation with multi-scale ocillating boundary [J]. J. Differential Equations, 1997, 137(1): 54-93.
-
1孙小弟,王燕萍.在非均匀网格上求解一类具边界摄动的非自伴奇异摄动第三边值问题[J].南京大学学报(自然科学版),1993,29(2):200-207.
-
2张英琴.第三边值问题解的一种估计[J].阴山学刊,1995,8(S2):10-15.
-
3曾宪忠.带有第三边值的捕食模型的正稳态解的存在性[J].应用数学学报,2006,29(5):801-820. 被引量:10
-
4夏必腊.论拉普拉斯方程第三边值问题与变分问题的等价性[J].大学数学,2004,20(3):65-68. 被引量:1
-
5顾永耕,曾宪忠.被捕食者带有第三边值的捕食模型的正稳态解的存在性[J].数学物理学报(A辑),2007,27(2):248-262. 被引量:7
-
6孙克,韩德化,程普新.按第三边值确定一阶导数系数的反问题[J].哈尔滨建筑工程学院学报,1994,27(1):102-106.
-
7王凤,王同科.两点边值问题非均匀网格二阶有限体积方法的外推[J].应用数学,2013,26(4):900-913. 被引量:3
-
8李功胜,袁忠信,徐肇昌.热传导方程第三边值的非线性热源的反演[J].郑州大学学报(自然科学版),1994,26(3):10-20. 被引量:5
-
9王风娟,王同科.一维抛物型方程第三边值问题的紧有限体积格式[J].数值计算与计算机应用,2013,34(1):59-74. 被引量:5
-
10陈宏霞,王同科.一维对流扩散方程第三边值问题的紧有限体积格式[J].天津师范大学学报(自然科学版),2013,33(2):10-19. 被引量:3