期刊文献+

Banach空间中一类K正定算子方程的可解性及其迭代构造 被引量:1

Solvability and Iterative Construction of Solution for a Class of K -Positive Definite Operator Equations in Banach Spaces
下载PDF
导出
摘要 设X为Banach空间,A:D(A)X→X为可闭的K一正定算子满足D(A)=D(K),则存在常数β>0,x∈D(A),‖Ax‖≤β‖Kx‖,而且方程Ax=f(f∈x)有唯一解.设{c_n}≥0为[0,1] 中实数列,定义迭代序列{x_n}n≥0 如下: x_0 D(A), x_(n+1)=x_n+c_ny_n,n≥0, y_n=k^(-1)f-k^(-1)Ax_n,n≥0,则{x_n}n≥0强收敛于方程Ax=f的唯一解. Let X be a Banach space, and A:D(A)(?)X→X a closcable and K-positive definite operator with D(A) = D(K) . Then there exists a constant β>0 such that for any x∈D(A), || Ax ||≤β||Kx|| . Furthermore, the operator A is closed, R(A)=X, and the equation Ax=f, for any f∈X, has a unique solution. Let {cn}n≥0 be a real sequence in [0,1], Define the sequence {xn}n≥0 iteratively by ( I ) xn+1 = xn+ cnyn,yn=K-1f-K-1Axn , with x0∈E D(A) . It is proved that the scquence ( I ) converges strongly to the unique solution of the equationin Ax=f in X.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第1期149-154,共6页 数学研究与评论(英文版)
关键词 BANACH空间 K-正定算子方程 可闭算子 可解性 迭代构造 K-positive definite operator closeable operator solvability iterative construction.
  • 相关文献

参考文献10

  • 1[1]BROWDER F E. Functional analysis and partial differential equations [J]. Math. Ann., 1959, 138:55-59.
  • 2[2]CHIDUME C E, ANEKE S J. Existence, uniqueness and approximation of a solution for a K-positive definite operator equation [J]. Appl. Anal., 1993, 50: 285-294.
  • 3[3]CHIDUME C E, OSILIKE M O. Approcimation of a solution for a K-positive definite operator equation [J]. J. Math. Anal. Appl. , 1997, 210: 1-7.
  • 4[4]DEIMLING K. Nonlinear Functional Analysis [M]. Berlin, Springer-Verlag, 1985.
  • 5[5]DUNN J C. Iterative construction of fixed points for multivalued operators of the monotone type [J]. J.Funct. Anal. , 1978, 27: 38-50.
  • 6[6]CHIDUME C E, OSILIKE M O. Nonlinear accretive and pseudo-contrctive operator equations in Banach spaces [J]. Nonl. Anal. , 1998, 31: 779-789.
  • 7[7]MOORE C. Iterative approximation of the solution to a K-accretive operator equation in certain Banach spaces [J]. Indian J. Pure. Appl. Math. , 1990, 21: 1087-1093.
  • 8[8]PETRYSHYN W V. Direct and iterative methods for the solution of linear operator equations in Hilbert spaces [J]. Trans. Amer. Math. Soc. , 1962, 105: 136-175.
  • 9[9]REID T. Symmetrizable completely continuous linear transformation in Hilbert space [J]. Duke Math. ,1951, 18: 41-56.
  • 10[10]PETRYSHYN W V. A characterization of strictly convexity of Banach spaces and other uses of duality mappings [J]. J. Funct. Anal. , 1970, 6: 282-291.

同被引文献2

  • 1DING Xie-ping. Iterative process with errors to nonlinear-strongly accretive operator equations in arbitrary Banach spaces[J].Computers Math Applic, 1997, 33(8): 75-82.
  • 2何昌,孙昭洪.一类非线性算子方程解的迭代逼近[J].四川大学学报(自然科学版),2003,40(3):430-433. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部