期刊文献+

非混沌的树映射 被引量:1

NON-CHAOTIC TREE MAPS
下载PDF
导出
摘要 设f是树T上的连续自映射,SAP(f),ω(f);Ω(f)分别是f的强几乎周期点集,ω-极限集,非游荡集.本文证明下面几条是等价的:(i)f是非混沌的;(ii)SAP(f)=ω(f);(iii)fΩ(f)是逐点等度连续的;(iv)f│ω(f)是逐点等度连续的;(v)f是一致非混沌的。 Let f be a continuous self-map of a tree T, and SAP(f), w(f),Ω(f) be the set of strongly almost periodic points of f, the set of w-limit points of /, the set of non-wandering points off/ respectively. In this paper, the authors prove that the following statements are equivalent: (i)f is non-chaotic; (ii)SAP(f) = w(f); (iii)f|Ω(f) is pointwise equicontinuous; (iv)f|w(f) is pointwise equicontinuous; (v)f is uniformly non-chaotic.
出处 《数学年刊(A辑)》 CSCD 北大核心 2004年第1期113-122,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10361001 10226014) 广西高校百名中青年学科带头人资助的项目
关键词 树映射 非混沌 一致非混沌 等度连续 拓扑熵 Tree map, Non-chaos, Uniformly non-chaos, Equicontinuity, Topo-logical entropy
  • 相关文献

参考文献7

二级参考文献58

  • 1麦结华.有非2方幂周期轨道的连续函数的特征[J].数学学报(中文版),1993,36(2):145-152. 被引量:9
  • 2周作领.线段自映射的周期点集[J].数学学报,1986,29(2):272-275.
  • 3Hero M W. Special α-limit points for maps of the interval. Proc. Amer. Math. Soc., 1992, 116:1015-1022.
  • 4Ye Xiangdong. Tree maps with non divisible periodic orbits. Bull. Austral. Math. Soc., 1997, 56:467-471.
  • 5Ye Xiangdong. The center and the depth of center of a tree map. Bull. Austral. Math. Soc., 1993,48: 347-350.
  • 6Ye Xiangdong. No division and the entropy of tree maps. Inter. J. Bifur. and Chaos, 1999, 9:1859-1865.
  • 7Li Tao and Ye Xiangdong. Chain recurrent points of a tree map. Bull. Austral. Math. Soc., 1999,59: 181-186.
  • 8Alseda L l and Ye Xiangdong. No division and the set of periods for tree maps. Ergod. Th. and Dynam. Sys., 1995, 15: 221-237.
  • 9Blokh A M.Threes with snowflakes and zero entropy maps. Topology, 1994, 33: 379-396.
  • 10Alseda L I, Baldwin S, Llibre J and Misiurewicz M. Entropy of transitive tree maps. Topology,1997, 36: 519-532.

共引文献37

同被引文献12

  • 1Babilonova M., Distributional chaos for triangular maps [J]. Ann. Math. Sil., 1999,13:33-38.
  • 2Smital J. and Stefankova M., Distributional chaos for triangular maps [J]. Chaos, Soliton and Fractals, 2004, 21:1125-1128.
  • 3Malek M., Distributional chaos for continuous mappings of the circle [J]. Ann. Math.Sil., 1999, 13:205-210.
  • 4Malek M., Distributional chaos and spectral decomposition on the circle [J]. Topology Appl., 2004, 135:215-229.
  • 5Schweizer B., Sklar A. and Smital J., Distributional (and other) chaos and its measurement [J]. Real Anal. Exchange, 2001, 27:495-524.
  • 6Canovas J. S., Distributional chaos on tree maps: The star case [J]. Comment Math.Univ., Carolin, 2001, 42:583-590.
  • 7Schweizer B. and Smital J., Measures of chaos and spectral decomposition of dynamical systems on the interval [J]. Trans. Amer. Math. Soc., 1994, 344:737-754.
  • 8Canovas J. S. and Hric R., Distributional chaos of tree maps [J]. Topology Appl., 2004,137:75-82.
  • 9Llibre J. and Misiurewicz M., Horseshoes, entropy and periods for graph maps [J].Topology, 1993, 32:649-664.
  • 10Alseda LI., Baldwin S., Llibre J. and Misiurewicz M., Entropy of transitive tree maps[J]. Topology, 1997, 36:519-532.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部