期刊文献+

弱可数紧性蕴涵拟弱滴状性质(英文)

Weak countable compactness implies quasi-weak drop property
下载PDF
导出
摘要 局部凸空间中每个弱可数紧闭凸集具拟弱滴状性质. Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
作者 丘京辉
出处 《苏州大学学报(自然科学版)》 CAS 2003年第4期111-114,共4页 Journal of Soochow University(Natural Science Edition)
关键词 局部凸空间 拟弱滴状性质 弱滴状性质 弱紧集 弱可数紧集 弱可数紧闭凸集 locally convex space quasi-weak drop property weak drop property weakly compact set weakly countably compact set.
  • 相关文献

参考文献27

  • 1BANA S J. On drop and nearly uniformly smooth Banach spaces[J]. Nonlinear Anal, 1990,14:927 - 933.
  • 2CHENG L,ZHOU Y,ZHANG F. Danes' drop theorem in locally convex spaces [J]. Proc Amer Math Soc,1996,124:3699 - 3702.
  • 3DANE S L. A geometric theorem useful in nonlinear functional analysis [ J ]. Boll Un Mat Ital, 1972,6 : 369- 372.
  • 4FLORET K. Weakly Compact Sets [ M]. Berlin, Heidelberg, New York: Springer - Verlag, 1980.
  • 5GEORGIEV P, KUTZAROVA D, MAADEN A. On the smooth drop property [J ]. Nonlinear Anal, 1996,26:595 - 602.
  • 6GILES J R, KUTZAROVA D N. Characterisation of drop and weak drop properties for closed bounded convex sets [ J ]. Bull Austral Math Soc, 1991,43:377 - 385.
  • 7GILES J R,SIMS B,YORKE A C. On the drop and weak drop properties for a Banach space [J]. Bull Austral Math Soc, 1990,41.503 - 507.
  • 8HORVATH J. Topological Vector Spaces and Distributions [M]. MA:Addison- Wesley, 1996.
  • 9JAMES R C. Weakly compact sets [J]. Trans Amer Math Soc, 1964,113 : 129 - 140.
  • 10KOTHE G. Topological Vector Spaces I [ M]. New York, Berlin, Heidelberg: Springer - Verlag, 1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部