摘要
在[2]中尹景尧得出关于单纯形的一类三角不等式。本文把不等式:A、B、C为ΔABC的三内角,推广到n维单形上去并且得另一类关于二面角的不等式.假定E中非退化单形Δn的顶点集S={P1,P2,…,Pn+1},表示顶点Pi所对的n-1维侧面,表示侧面Fi与Fi所夹的内二面角,即则有下面结论:m为任何自然数;等号当Δn为正则单形时取得.
In [2], YIN Jing-rao gets the triangle inequality about simplex. This paper spreads the inequality , here A. B. C stand for the three interior angle of triangle ABC' to n-dimensional simplex field and gets another class of inequality about dihedral angle: here,, is interior dihedral angle of leteral face F, and F,, m, n is arbitrary natural number. The equality is obtained when An is regular simplex.
关键词
N维单形
正则单形
内二面角
n-dimensional simplex
regular simplex
interior dihedral