摘要
在分析复合材料宏、细观场量之间联系的基础上 ,基于复合材料细观结构周期性假设 ,选取适当的代表性体积元 ,采用弱化的边界连续性与周期性条件 ,通过对细观力学方程的建立与求解 ,建立了一种纤维增强金属基复合材料宏、细观统一力学模型。该模型建立起了宏、细观场量的联系 ,获得了宏观应力 -应变关系。试验及理论计算表明 ,该模型能够较好地预测复合材料宏观弹塑性性能。利用该模型分析了复合材料宏观弹塑性应力 -应变响应以及细观几何结构特征对宏观弹塑性性能的影响。此外 ,将该模型与常规的结构分析方法 (如有限元法 )相结合 ,能够开展对金属基复合材料结构的弹塑性行为分析。
unified macro- and micro-mechanics model is presented through analyzing mechanics equations with weakened continuity and periodicity boundary conditions on a representative volume element which is selected based on hypothesis of periodicity in composite microstructure. In the model, relation between macroscopic and microscopic stress and strain fields is set up and macroscopic stress-strain relation is obtained. The model can calculate elastoplastic properties of composites correctly, which is verified by experiments and theoretical analysis. With the model, macroscopic stress-strain responses are studied and micro-structural geometry effects on macroscopic elastoplastic properties are analyzed. In addition, elastoplastic behavior of metal matrix composite structures can be analyzed by combining the model with routine structural analysis method (e.g. finite element method).
出处
《机械科学与技术》
CSCD
北大核心
2003年第6期982-985,1002,共5页
Mechanical Science and Technology for Aerospace Engineering
基金
航空基础科学基金 ( 0 1C5 2 0 17)资助
关键词
金属基复合材料
弹塑性性能
宏、细观统一力学模型
代表性体积元
Metal matrix composite
Elastoplastic property
Unified macro- and micro-mechanics model
Representative volume element