期刊文献+

纤维增强金属基复合材料弹塑性行为分析 被引量:5

Analysis of Elastoplastic Behavior of Fiber Reinforced Metal Matrix Composites
下载PDF
导出
摘要 在分析复合材料宏、细观场量之间联系的基础上 ,基于复合材料细观结构周期性假设 ,选取适当的代表性体积元 ,采用弱化的边界连续性与周期性条件 ,通过对细观力学方程的建立与求解 ,建立了一种纤维增强金属基复合材料宏、细观统一力学模型。该模型建立起了宏、细观场量的联系 ,获得了宏观应力 -应变关系。试验及理论计算表明 ,该模型能够较好地预测复合材料宏观弹塑性性能。利用该模型分析了复合材料宏观弹塑性应力 -应变响应以及细观几何结构特征对宏观弹塑性性能的影响。此外 ,将该模型与常规的结构分析方法 (如有限元法 )相结合 ,能够开展对金属基复合材料结构的弹塑性行为分析。 unified macro- and micro-mechanics model is presented through analyzing mechanics equations with weakened continuity and periodicity boundary conditions on a representative volume element which is selected based on hypothesis of periodicity in composite microstructure. In the model, relation between macroscopic and microscopic stress and strain fields is set up and macroscopic stress-strain relation is obtained. The model can calculate elastoplastic properties of composites correctly, which is verified by experiments and theoretical analysis. With the model, macroscopic stress-strain responses are studied and micro-structural geometry effects on macroscopic elastoplastic properties are analyzed. In addition, elastoplastic behavior of metal matrix composite structures can be analyzed by combining the model with routine structural analysis method (e.g. finite element method).
出处 《机械科学与技术》 CSCD 北大核心 2003年第6期982-985,1002,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 航空基础科学基金 ( 0 1C5 2 0 17)资助
关键词 金属基复合材料 弹塑性性能 宏、细观统一力学模型 代表性体积元 Metal matrix composite Elastoplastic property Unified macro- and micro-mechanics model Representative volume element
  • 相关文献

参考文献12

  • 1范赋群,王震鸣,嵇醒,黄小清.关于复合材料力学几个基本问题的研究[J].华南理工大学学报(自然科学版),1995,23(4):1-7. 被引量:19
  • 2雷友锋,宋迎东,高德平,程卫华.纤维增强复合材料结构的宏细观一体化分析方法[J].机械科学与技术,2002,21(4):617-619. 被引量:16
  • 3邹祖讳(美)主编 吴人洁等译.复合材料的结构与性能[M].北京:科学出版社,1999..
  • 4Sun C T. Modeling continuous fiber metal matrix composite as an orthotropic elastic-plastic materia[A]. Metal Matrix Composites: Testing, Analysis and Failure Modes [M],ASTM STPI032, W S Johnson, Ed , American Society for Testing and Materials, Philadelphia, 1989,148- 160.
  • 5Pindera M J, Herakovich C T, Becker W, Aboudi J. Nonlinear response of unidirectional boron/aluminum[J].J Comp Mater, 1990,24(2)-2-21.
  • 6Sun C T, Chen J L. Mechanical characterization of SCS-6/Ti-6-4 metal matrix composite [J]. J Comp Mater,1990,24 :1029-1059.
  • 7Brockenbrough J R, Suresh S, Wienecke H A. Deformation of MMCs with continuous fibers: geometrical effects of fiber distribution and shape [J]. Acta Metall Mater,1991,39:735-752.
  • 8Needlman A. A continuum model for void nucleation by inclusion debonding[J]. J Appl Mech , 1987,54.
  • 9Kenag A D, Doyle J, Sun C T. The characterization of boron/aluminum composite in the nonlinear range as an orthotropic elastic-plastic materials [ J ]. J Comp Mater, 1987,21:516-531.
  • 10Sun C T, Chen J L. A simple flow rule for characterizing nonlinear behavior of fiber composites [J]. J Comp Mater , 1989,23:1009-1021.

二级参考文献22

  • 1邓梁波,范赋群.纤维束增强复合材料细观统计破坏理论[J].力学学报,1993,25(4):419-426. 被引量:4
  • 2曾庆敦,马锐,范赋群.复合材料正交叠层板最终拉伸强度的细观统计分析[J].力学学报,1994,26(4):451-461. 被引量:11
  • 3[1]Symposium on Mechanics of Composites of the McNU'97, Joint ASME/ASCE/SES Mechanics Conference, Evanston, IL, USA, 1997
  • 4[2]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problem[A]. Proceedings of the Royal Society[C], London, Series A, 1957,240:376~396
  • 5[3]Mori T, Tanaka K. Average stress in matrix and average enengy of materials with misfitting inclusions[J]. Acta Metall., 1973,21:571~574
  • 6[4]Kim S J, Shin E S. A thermovisoplastic theory for composite materials by using a matrix-partitioned unmixing-mixing scheme[J]. J. Comp. Mater., 1996,30(15)
  • 7[5]Kwon Y W. Calculation of effective moduli of fibrous composites with micro-mechanics damage[J]. Comp. Struct., 1993,25,187~192
  • 8[6]Aboudi J. Mechanics of Composite Materials: A Unified Micromechanics Approach[M] Elsevier, Amsterdam, 1991
  • 9[7]Wu J F, Shephard M S, Dvorak G J, Bahei-El-Din Y A. A material model for the finite element analysis of metal matrix composites[J]. Comp. Sci.&Tech, 1989,35:347~366
  • 10[8]Brockenbrough J R, Suresh S, Wienecke H A. Deformation of MMCs with Continuous Fibers: Geometrical Effects of Fiber distribution and Shape[J]. Acta. Metall. Mater., 1991,39:735~752

共引文献30

同被引文献80

引证文献5

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部