期刊文献+

有源层厚度对CuPc-OTFT器件性能的影响 被引量:2

Active Layer Thickness Dependence of Electrical Properties of Top Contact Organic Thin Film Transistor Based on Copper Phthalocyanine
下载PDF
导出
摘要 研究了不同厚度有源层的顶电极CuPc OTFT器件的电学特性。发现器件的性能与有源层厚度有依赖关系,其中,有源层厚度为20nm的器件性能最好。在有源层厚度大于20nm时,有源层厚度的增大不但分去一部分栅电压而且还增大了源、漏电极的接触电阻,从而不利于器件性能的提高。但当有源层厚度小于20nm以后器件的性能开始降低。我们认为当有源层厚度降低到一定程度时,有源层上表面的表面态会使有机材料的隙态浓度增加从而对沟道载流子迁移率产生不良影响以及使器件的阈值电压增大。 The device properties of copper phthalocyanine(CuPc)-based top contact organic thin film transistors(OTFTs) with various active layer thickness were investigated. The operating performance of the OTFTs depended on the thickness, and a device with a CuPc layer of 20 nm showed the optimum property. The poor performance of OTFTs with active layer thickness larger than 20 nm was attributed to thicker active layer sharing more gate voltage and offering more contact resistance. For poorer performance of the devices with active layer thinner than 20 nm, it was deduced that the back surface of a very thin active layer can introduce located states into the gap of organic materials, which can decrease the field-effect mobility of OTFTs and increase threshold voltage of OTFTs.
出处 《液晶与显示》 CAS CSCD 2004年第1期14-18,共5页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金资助项目(29974031)
关键词 有机薄膜晶体管 有源层 OTFT 接触电阻 载流子迁移率 场效应迁移率 organic thin film transistor (OTFTs) active layer thickness
  • 相关文献

参考文献1

二级参考文献8

  • 1KA杰克逊(美).半导体器件工艺[M].北京:科学出版社,1996.302.
  • 2杨沁清译.数字器件和工艺[M].北京:科学出版社,1990.245-246.
  • 3Jang Shenglyang,Jpn J Appl Phys,1998年,37卷,1772页
  • 4杰克逊 K A,半导体器件工艺,1996年,302页
  • 5曲喜新,电子薄膜材料,1996年,142页
  • 6孟宪章,半导体物理,1993年,255页
  • 7虞丽生,半导体异质结物理,1990年,99页
  • 8杨沁清(译),数字器件和工艺,1990年,245页

共引文献2

同被引文献24

  • 1Brown A R, Jarrett C P,de Leeuw D M,et al. Field-effect transistors made from solution-processed organic semiconductors[J]. Synth. Met., 1997, 88(1): 37-48.
  • 2Matters M,de Leeuw D M,Herwig P T,et al. Bias-stress induced instability of organic thin film transistors[J].Synth. Met.,1999, 102(1): 998-999.
  • 3Schoonveld W A, Oostinga J B, Vrijmoeth J B, et al. Charge trapping instabilities of sexithiophene thin film transistors[J]. Synth. Met., 1999, 101(3): 608-609.
  • 4Knipp D, Street R A,Krusor B,et al. Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport[J]. J. Appl. Phys., 2003, 93(1): 347-353.
  • 5Sewell F A.Charge storage model for variable threshold FET memory elements[J]. Appl. Phys. Lett., 1969, 14(1): 45-47.
  • 6Ferris-Prabhu A V.Time dependence of charge transport in MIS memory transistor[J]. Appl. Phys. Lett., 1972, 20(2): 149-150.
  • 7Gordon N , Johnson W. Switching mechanisms in the thin-oxide MNOS devices[J]. IEEE Trans.Electron Devices, 1973, ED-20(2): 253-254.
  • 8Chang J J.Theory of MNOS memory transistor[J]. IEEE Transaction on Electron Devices, 1977, ED-24(5): 511-513.
  • 9Powell M J. Charge trapping instabilities in amorphous silicon-sillicon nitride thin-film transistors[J]. Appl. Phys. Lett., 1983, 43(6): 597-599.
  • 10Powell M J,van Berkel C, French I D,et al. Bias dependence of instability mechanisms in amorphous silicon thin-film transistors[J]. Appl. Phys. Lett., 1987, 51(16): 1242-1244.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部