期刊文献+

切口试样破坏过程试验与细观数值分析 被引量:2

EXPERIMENT AND MESOMECHANICAL NUMERICAL ANALYSIS FOR DEFORMATION AND FAILURE PROCESS OF NOTCHED SPECIMENS
下载PDF
导出
摘要 对切口圆棒试样与切口板试样进行单向拉伸试验和有限元数值分析 ,以试样最小横截面上各点变化的应力应变场为体胞演化的载荷控制条件 ,采用三维含球形微孔洞体胞模型分别对各点微孔洞长大规律进行数值模拟。结果表明 ,在试样得到的断口韧性区域内 ,微孔洞的生长速度较快 ;试样失稳前微孔洞相对体积百分数最大的区域与试验时试样的起裂位置一致 ,因而证实微孔洞的演化是导致试样材料在拉伸条件下破坏的主要原因 。 The fracture surfaces of notched bar specimens and notched plane specimens under tensile tests were analyzed. Based on the macro finite element numerical calculation, the three dimension cell model with a spherical void was employed to simulate the deformation and fracture progress for these two typical notched specimens under local stress and strain field on the minimal cross section. The loading control on the cell was obtained from triaxial stress parameter, Lode parameter and plastic strain. The results show that the void in the cell model grows faster in the ductile region on the minimal cross section than that on the other areas. The position of the maximal relative volume fraction before the specimen failure is consistent with the position of fracture in the experiment. The results verify that the void growth in the ductile materials is the main reason of failure. And the cell models which are used to analyze the specimens deformation and failure process is valid.
出处 《机械强度》 CAS CSCD 北大核心 2004年第1期72-75,共4页 Journal of Mechanical Strength
基金 国家自然科学基金 (1 9972 0 55) 航空基础科学基金 (0 0C530 2 2 )资助项目~~
关键词 切口试样 体胞模型 微孔洞 相对体积百分数 有限元 数值分析 韧性材料 Notched specimens Cell model Void Relative volume fraction
  • 相关文献

参考文献7

  • 1ZHENG ChangQing,ZHOU Li,ZHANG KeShi. Micromechanincal research and application for the ductile fracture of metal. Beijing: National Defense Industry Press,1995(In Chinese)(郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究.北京:国防工业出版社,1995).
  • 2Rice J R,Tracy D M. On the ductile enlargement of voids in triaxials stress fields. Journal of the Mechanics and Physics of Solids,1969,17(3) :201 ~217.
  • 3Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part Ⅱ -yield criteria and flow rules for porous ductile media. Journal of Engineering Material Technology,1977,99(1): 2 ~ 15.
  • 4Tvergaard V,Needleman A. Analysis of the cup-cone fracture in round tensile bar. Acta Metall,1984,32:157 ~ 169.
  • 5Worswick M J,Pick R J. Void growth and constutive softening in a periodically voided solid. Journal of the Mechanics and Physics of Solids,1990,38(5) :601 ~ 625.
  • 6ZHANG KeShi,ZHENG ChangQing. The three dimension cell model with a spherical void growth analysis under different triaxial stress states,the development of solid mechanics. Beijng: Tsinghua University Press,1997. 249 -257(h Chinese)(张克实,郑长卿.不同三轴应力状态下含球形微孔洞体胞的三维分析,固体力学进展.北京:清华大学出版社,1997.249-257).
  • 7Koplik J,Needleman A. Void growth and coalescence in porous plastic solids. Internation Journal of Solid and Structure,1988,24:835 ~ 858.

同被引文献16

  • 1汤安民,师俊平.几种金属材料宏观断裂形式的试验研究[J].应用力学学报,2004,21(3):142-144. 被引量:27
  • 2Liu C T. Environmental embrittlement and grain boundary fracture in Ni3Al.Scr. Metall., 1992, 27:25-30.
  • 3Nishimura C, Liu C T. Effects of ordered state on environmental embattlement in (Co,Fe)3V. Scripta Mater., 1996, 35:1 441 - 1 448.
  • 4George E P, Liu C T, Pope D P. Mechanical behavior of Ni3Al: effects of environment, strain rate, temperature and boron doping. Acta Mater.,1996,44:1 757 - 1 762.
  • 5Lu G, Guo J T, Chen K Y, Hu Z O. A first principles investigation of environmental embattlement of Co3Ti alloy. Acta Mater., 1996, 44:4019 -4026.
  • 6Pollock T M, Mumm D R, Muraleedharan K, Martin P L. In-Situ observations of crack initiation and growth at notches in cast Ti-48Al-2Cr-2Nb.Scripta Mater., 1996, 35:1 311 - 1 317.
  • 7Magnin T. Advances in corrosion deformation interactions. Mater. Sci. Forum, 1996,202:3 - 9.
  • 8Garland M, Mendez J, Violan P, Ait SaadiA. Evolution of dislocation structures and cyclic behavionr of a 316L-type austenitic stainless steel cycled in vacuum at room temperature. Mater. Sci. Eng., 1988, A118:83 - 89.
  • 9Kurzydlowski K J, Ralph B. The quantitative description of the microstructure of materials. Boca Raton, Florida, USA:CRC Press, 1995.195 - 209.
  • 10Aretz H. Numerical analysis of diffuse and localized necking in orthotropic sheet metals[J]. International Journal of Plasticity, 2007, 23: 798-840.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部