期刊文献+

粘弹性固体的精细积分有限元算法 被引量:4

Precise integration finite element algorithm of viscoelastic solid
下载PDF
导出
摘要 粘弹性固体本构方程的数学表达式分为微分型和积分型两种,其数值求解主要是时域上离散计算。文中从微分型表达式出发导出其状态空间方程的数学表达式,通过严格推导论证了它与微、积分型表达式的等价性;引入状态空间方程,从而利用精细积分格式来求解粘弹性固体本构方程;给出了粘弹性固体本构方程的精细积分有限元算法,为求解粘弹性固体本构方程的数值解提供了一个新的途径,具有计算简便,求解精度高等优点。 The mathematical representation of viscoelastic solid constitutive equation can be written into the differential equation and integral equation,and their numerical solutions always depend on discrete of time domain.From the differential representation, the mathematical representation of the state space equation deduced, and the equivalence of these equations is given by strictly derivation.Using the state space equation, the constitutive equation can be solved by precise integration.And a precise integration algorithed finite element mothed is proposed. The present algorithm can be used for solving viscoelastic solid constitutive equation and has advantages of high precision and convenient calculation.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2004年第1期109-114,共6页 Chinese Journal of Computational Mechanics
关键词 粘弹性固体 精细积分有限元 状态空间方程 固体力学 本构方程 有限元法 viscoelastic solid constitutive equation state space equation precise integration finite element
  • 相关文献

参考文献9

  • 1Flugge W.Viscoelasticity(2nd edition)[M]. Springer-Verlag,Berlin,1975.
  • 2Christensen R M. Theory of Viscoelasticity(2nd edi-tion)[M].Acadmic Press,New York,1982.
  • 3Bland D R. Linear Viscoelasticity[M].Pergamon Press,1960.
  • 4АрутогонянНХ 邬瑞锋 译.蠕变理论中的若干问题[M].北京:科学出版社,1962..
  • 5Harry Kraus.Creep Analysis[M].Jown Wiley & sons,1980.
  • 6Zeinkeiwicz O C. An implict scheme for finite element solution of problem of viscoplasticity and creep[R]. C/R/252/75,University Coll of Suiansen,1975.
  • 7朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利工程学报,1983,5.
  • 8孙均 汪炳槛.地下结构有限元解析[M].上海:同济大学出版社,1988..
  • 9监凯维奇OC 尹泽勇 柴家振 译.有限元法[M].北京:科学出版社,1985..

共引文献8

同被引文献32

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部