期刊文献+

高速磁悬浮列车纵向及垂向气动力数值分析 被引量:27

Numerical Analysis of Aerodynamic Force in Longitudinal and Vertical Direction for High-speed Maglev Train
下载PDF
导出
摘要 采用数值分析的方法研究高速磁悬浮列车在纵向风作用下所受气动力和力矩。利用三维粘性定常不可压缩Navier Stokes方程,k~ε两方程紊流模型,采用有限体积法计算高速磁悬浮列车在不同运行速度条件下20个工况点的气动阻力,升力和俯仰力矩;分析了车下空气隙尺寸对上述气动力的影响,并与轮轨型列车的气动力特征作了比较。计算结果表明,车下空气隙的大小对列车运行的空气阻力只有微小的影响,但对气动升力的影响较大;随着车速的提高,气动阻力、升力和俯仰力矩均有较大幅度提高,不同的计算模型其提高幅度是不一样的。 The aerodynamic force and moment of high-speed magnetically levitated (maglev) train against longitudinal wind is studied by numerical analysis method. Based on the 3D, viscosity, stable and incompressible Navier-Stokes equations and two-equation k-Ε turbulent model, the aerodynamic drag, lift and pitching moment of high speed maglev trains in 20 working conditions at different running speeds are calculated with finite volume method. The influence of different air clearance beneath the train body on these aerodynamic forces is analyzed and the aerodynamic features of the maglev train and the wheel/rail train compared. The calculation result shows that the influence of different air clearance beneath train body on aerodynamic drag is quite limited, but its effect on the aerodynamic lift is fairly strong. The aerodynamic drag, lift and pitching moment of the maglev train increase with the train speed. However, the magnitude of the increase varies with different calculation models.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2004年第1期8-12,共5页 China Railway Science
基金 国家自然科学基金资助项目(59975078) 四川省应用基础研究项目(02GY029 040)
关键词 磁悬浮列车 气动作用力 地面效应 数值分析 Aerodynamics Finite volume method Ground effect Magnetic devices Mathematical models Navier Stokes equations Numerical analysis Viscosity
  • 相关文献

参考文献20

  • 1[1]Alscher H, iguchi M, Eastham A R Boldea. Non-contact Suspension and Propulsion Technology [J]. Vehicle System Dynamics, 1983, 12(3): 259-289.
  • 2[2]Coffey HT, Chilton F, Hoppie LO. Magnetic Levitation of High-speed Ground Vehicles [C]. Proceedings of Applied Superconductive Conference, IEEE, New York, 1972: 62-75.
  • 3[3]Wyczalek FA. Maglev Transit Technology in Russia [C]. Proceedings of Maglev ′93, 13th International Conference on Magnetically-levitated Systems and Linear Drives, Argonne National Lab., Argonne IL, 1993: 88-93.
  • 4[4]Kolm HH, Thornton RD. Electromagnetic Flight [J]. Science of America, 1973, 229(4): 17-25.
  • 5[5]Coffey HT. Status and Review of the U.S. Maglev Program [C]. Proceedings of International Conference on Speedup Technology for Railway and Maglev Vehicles. Yokohama, Japan, 1993,123-129.
  • 6[6]Rhodes RG. Maglev Research in the UK [C]. Proceedings of Second International Seminar on Superconductive Magnetic Levitated Trains. T Ohtsuka and Mlguchi (eds). Miyazaki, Japan, 1982: 31-37.
  • 7[7]Rhodes RG, Mulhall BE. Magnetic Levitation for Rail Transport [M], New York, Clarendon Press Oxford, 1981.
  • 8[8]Chen SS, Rote DM, Coffey HT. Review of Vehicle/Guideway Interactions in Maglev Systems, in Fluid-Structure Interaction, Transient Thermal-Hydraulics, and Structural Mechanics[J]. ASME, New York, 1992, 231(3): 81-95.
  • 9[9]Bohn G, Steinmetz G. Electromagnetic Suspension System of the Magnetic Train Tansrapid [C]. Proceedings of International Conference on Maglev Transport ′85. Keidanren Kaikan, Tokyo, Japan, 1985: 107-114.
  • 10[10]Cai YG, Chen SS. Dynamic Characteristics of Magnetically-levitated Vehicle Systems [J]. Applied Mechanics Reviews, ASME, 1997, 50(11): 647-670.

同被引文献249

引证文献27

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部