摘要
基于扩展Kalman滤波的GPS/SINS组合导航算法,需要对原始的非线性连续系统模型进行线性化和离散化处理,要求系统噪声和测量噪声为零均值的高斯白噪声,且易于出现滤波器发散.BP人工神经网络毋需对所求解的问题建模,能够很好地逼近系统非线性特性,获得较高精度的导航定位信息;还具有计算过程稳定,不涉及矩阵求逆,不需要迭代逼近,以及容易实现并行处理等优点.本文设计适用于GPS/SINS组合导航系统的BP网络模型,并在标准的BP算法基础上,采用共轭梯度法改进网络训练速度及精度.最后,通过仿真算例说明BP网络方法用于GPS/SINS组合导航计算的可行性.
出处
《飞行器测控学报》
2003年第4期43-48,共6页
Journal of Spacecraft TT&C Technology