期刊文献+

一种基于F-矩阵的最大频繁项目集快速挖掘算法 被引量:1

A Fast Mining Algoritm of Maximum Frequent Itemsets Based on F-matrix
下载PDF
导出
摘要 最大频繁项目集挖掘是多种数据挖掘应用研究的一个重要方面,最大频繁项目集的快速挖掘算法研究是当前研究的热点。传统的最大频繁项目集挖掘算法要多遍扫描数据库并产生大量的候选项目集。为此,该文提出了基于F-矩阵的最大频繁项目集快速挖掘算法FMMFIBFM,FMMFIBFM采用FP-tree的存储结构,仅须扫描数据库两遍且不产生候选频繁项目集,有效地提高了频繁项目集的挖掘效率。实验结果表明,FMMFIBFM算法是有效可行的。 Mining maximum frequent itemsets is a major aspect of data mining researches.Efficient mining algorithm research of maximum frequent itemsets is the key problem.Conventional algorithms of maximum frequent itemsets need generate a lots of candidate sets,and need repeatedly scan the database,especially when there exist prolific patterns and or long patterns.In order to overcome the drawbacks of traditional mining algorithms,in this paper,the authors introduce algorithm FMMFIBF (fast mining maximum frequent itemsets based on F-matrix) ,FMMFIBF only scan database twice by using FP-tree structure,and need not to generate any candidate itemsets,so mining efficiency of maximum frequent itemsets is obviously improved.Experimental result shows that FMMFIBF algorithm is effective and efficient.
作者 杨萍
出处 《计算机工程与应用》 CSCD 北大核心 2003年第34期197-200,共4页 Computer Engineering and Applications
基金 安徽省自然科学基金(编号:03042205) 安徽省教育厅自然科学研究基金(编号:2003kj029)
关键词 数据挖掘 频繁模式树 频繁项目集 关联规则 最大频繁项目集 Data Mining,Frequent Pattern tree,Frequent Itemsets,Association Rules,Maximum Frequent Itemsets
  • 相关文献

参考文献4

二级参考文献20

  • 1Brin S,Motwanti R,Ullman J et al. Dynamic itemset counting and implication rules for market basket data[C].In:Proceedings of the Intemational Conference on Management of Data,1997:255~264
  • 2Brin S,Motwanti R,Silverstein C.Beyond market baskets:generalizing association rules to correlations[C].In:Proceedings of the ACM SIG MOD international Conference on Management of Data,1997:265~276
  • 3Agrawal R,ImielinSki T,Swami A.Mining association rules between sets of items in large database[C].Proceeding of the ACM SIGMOD International Conference on Management of Data, 1993:207~216
  • 4Agrawal R,Srikant R.Fast algorithm for mining association rules[C].In :Proceedings of the 1994 International Conference on Very Large Data Bases,Santiago,Chile: 1994:487~499
  • 5张朝晖,Proceedings of PAKDD,1997年
  • 6Cheung D,IEEE Trans Knowl Data Eng,1996年,8卷,6期,911页
  • 7Han J,IEEE Trans Knowl Data Eng,1996年,8卷,3期,373页
  • 8Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 9Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 10Agrawal R, ImielinSki T, Swami A. Mining association rules between sets of items in large database[A]. Proceeding of the ACM SIGMOD international Conference on Management of Data, 1993,(2):207- 216

共引文献176

同被引文献5

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C].In:Proc of the 20th lnt'l Conf on Very Large Databases(VLDB'94),Santiago:Morgan Kaufmann,1994:487-499[EB/OL].http://www.almaden.ibm.com/cs/people/srikant/papers/vldb94.pdf.
  • 3J Han,J Pei and Y Yin.Mining Frequent Patterns without Candidate Generation:A Frequent-Pattern Tree Approach Mining Frequent Patterns without Candidate Generation[J].Data Mining and Knowledge Discovery,2004,8:53-87.
  • 4Grahne G,Zhu J.Efficiently using prefix-trees in mining frequent itemsets[C].In:1st Workshop on Frequent Itemset Mining Implementation(FIMI'03),2003.
  • 5方炜炜,杨炳儒,宋威,侯伟.基于布尔矩阵的关联规则算法研究[J].计算机应用研究,2008,25(7):1964-1966. 被引量:18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部