摘要
In many clusters connected by high-speed communication networks, the exact structure of the underlying communication network and the latency difference between different sending and receiving pairs may be ignored when they broadcast, such as in the approach adopted by the broadcasting method in MPICH, a widely used MPI implementation. However, the underlying network cluster topologies are becoming more and more complicated and the performance of traditional broadcasting algorithms, such as MPICHs MPI_Bcast, is far from good. This paper analyzed the impact of communication latencies and the underlying topologies on the performance of broadcasting algorithms for multilevel clusters. A multilevel model was developed for broadcasting in clusters with complicated topologies, which divides the cluster topology into many levels based on the underlying topology. The multilevel model was used to develop a new broadcast algorithm, MLM broadcast-2 (MLMB-2), that adapts to a wide range of clusters. Comparison of the performance of the counterpart MPI operation MPI_Bcast and MLMB-2 shows that MLMB-2 outperforms MPI_Bcast by decreasing the broadcast running time by 60%-90%.
In many clusters connected by high-speed communication networks, the exact structure of the underlying communication network and the latency difference between different sending and receiving pairs may be ignored when they broadcast, such as in the approach adopted by the broadcasting method in MPICH, a widely used MPI implementation. However, the underlying network cluster topologies are becoming more and more complicated and the performance of traditional broadcasting algorithms, such as MPICHs MPI_Bcast, is far from good. This paper analyzed the impact of communication latencies and the underlying topologies on the performance of broadcasting algorithms for multilevel clusters. A multilevel model was developed for broadcasting in clusters with complicated topologies, which divides the cluster topology into many levels based on the underlying topology. The multilevel model was used to develop a new broadcast algorithm, MLM broadcast-2 (MLMB-2), that adapts to a wide range of clusters. Comparison of the performance of the counterpart MPI operation MPI_Bcast and MLMB-2 shows that MLMB-2 outperforms MPI_Bcast by decreasing the broadcast running time by 60%-90%.
基金
the National Natural Science Foundation of China (No. 60103019) and the National High-Tech Research and Development Program of China (No. 2001AA111110)