期刊文献+

视频对象分割及跟踪方法研究 被引量:2

Video Objects Segmentation and Tracking in Video Sequences
下载PDF
导出
摘要 讨论和分析了视频对象全自动提取及后续帧中的跟踪过程及采用的方法 ,对其算法、分割性能和结果进行了比较和评述。并结合Hausdorff和Snake跟踪器 ,对初始对象轮廓进行跟踪。结果证明 。 The ISO MPEG4 has attracted much attention recently for providing a standard solution for object-based coding and multimedia data access and manipulation. So content-based representation and coding of the visual information is currently becoming an extremely active research field. Object-based video coding can provide greater compression ratio and better quality of reconstructed images. Video objects segmentation is a key technology in object-based video coding and multimedia data access etc. This paper depictes and analyzes and compares the video objects automatic segmentation and tracking processes and methods. Existing problems and development prospect in this field are described.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第3期274-277,共4页 Geomatics and Information Science of Wuhan University
基金 武汉大学科研启动基金资助项目 ( 5 0 2 2 73 0 10 )
关键词 视频对象 对象分割 对象跟踪 聚类分析 光流 video object object segment object tracking optical flow snake model clustering analysis
  • 相关文献

参考文献5

二级参考文献14

  • 1崔讫.图像处理与分析数学形态学方法及应用[M].科学出版社,2000..
  • 2边旋祺 张学工 等.模式识别[M].北京:清华大学出版社,2000..
  • 3[1]Thomas Meier, King N. Ngan. Automatic segmentation of moving objects for video object plane generation. IEEE Transaction on Circuits and Systems for Video Technology, 1998,8(5) :525~538.
  • 4[2]Neri A, Colonnese S, Russo G et al. Automatic moving object and background separation. Signal Processing, 1998,66 (2) : 219~232.
  • 5[3]Luc Vincent, Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6) : 583~ 598.
  • 6[4]Philippe Salembier, Montse Pardas. Hierarchical morphological segmentation for image sequence coding. IEEE Transactions on Image Processing, 1994,3(5) :639~651.
  • 7[5]Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 (9): 850 ~863.
  • 8Wang Demin,IEEE Transactions Circuit Systems Video Technology,1998年,8卷,5期,539页
  • 9崔讫,图像处理与分析.数学形态学方法及应用,2000年
  • 10Wang Demin,IEEE Trans Circuit Syst Video Technol,1998年,8卷,4期,339页

共引文献58

同被引文献9

  • 1江志军,易华蓉.一种基于图像金字塔光流的特征跟踪方法[J].武汉大学学报(信息科学版),2007,32(8):680-683. 被引量:35
  • 2[1]Benezeth Y,Emile B,Rosenberger C.Comparative Study on Foreground Detection Algorithm for Human Detection[C]// Proceedings of the Fourth International Conference on Image and Graphics.America:IEEE Computer Society,2007:661-666.
  • 3[4]Elgarnmal A,Duraiswami R,Harwood D,et al.Background and foreground modeling using non-parametric kernel density estimation for visual surveillance[C]//Proceedings of IEEE.America:IEEE Computer Society,2002:1151-1163.
  • 4[5]Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking:Proceedings of CVPR[C]// Proceedings of Computer Vision and Pattern Recognition.America:IEEE Computer Society,1999:246-252.
  • 5[6]Ju Han Bhanu B.Detecting moving humans using color and infrared video[C]//Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.America:IEEE Computer Society,2003:228-233.
  • 6[7]Haritaoglu I,Harwood D,Davis L.W 4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,28(8):809-830.
  • 7[8]Caplier A,Bonnaud L,Chassery J M.Robust Fast Extraction of Video Objects Combining Frame Differences and Adaptive Reference Image[J].Image Processing,2001(2):785-788.
  • 8[9]Chien ShaoYi,Huang YuWen,Hsieh BingYu,et al.Fast Video Segmentation Algorithm with Shadow Cancellation,Global Motion Compensation,and Adaptive Threshold Techniques[J].IEEE Transactions on Multimedia,2004,6(5):732-748.
  • 9刘李杰,蔡德钧,翁南钐.一种面向运动的视频对象分割算法[J].计算机学报,2000,23(12):1326-1331. 被引量:11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部