一类3带非分离二元小波和滤波器的完全参数化研究
摘要
获得了一类3带非分离正交FIR滤波器的完全参数表达式,给出了产生连续小波基的充分条件,构造了非分离紧支正交连续的小波参数化函数库.
出处
《中国科学(E辑)》
CSCD
北大核心
2004年第2期211-219,共9页
Science in China(Series E)
基金
国家自然科学基金(批准号:60375021)
教育部骨干教师基金
湖南省自然科学基金(03JJY3096)资助项目
参考文献12
-
1[1]Kovacevic' J, Vetterli M. Nonseparable multi-dimensional perfect reconstruction filter and wavelet bases for Rn. IEEE Trans Inform Theory, 1992, 38:533~555
-
2[2]Kovaccevic'J , Vetterli M. Nonseparable two- and three-dimensional wavelets. IEEE Trans Signal Processing, 1995, 43(5): 1269~1273
-
3[3]Belogay E, Wang Y. Arbitrarily smooth orthogonal non-separable wavelets in R2. SIAM J Math Anal, 1999,30(3): 678~697
-
4[4]Daubechies I. Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math, 1988, 41:909~996
-
5[5]Daubeichies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
-
6[6]Cohen A, Daubechies I. Nonseparable bidimensional wavelet bases. Revista Mat Iberoamericana, 1993, 9:51~137
-
7[7]Stanhill D, Zeevi Y Y. Two-dimensional orthogonal wavelets with vanishing moments. IEEE Trans Signal Processing, 1996, 44(10): 2579~2589
-
8[8]Stanhill D, Zeevi Y Y. Two-dimensional orthogonal filter banks and wavelets with linear phase. IEEE Trans Signal Processing, 1998, 46(1): 183~190
-
9[9]He Wenjie, Lai Ming. Examples of bivariate non-separable compactly supported orthonormal continuous wavelets. IEEE Trans Image Processing, 2000, 9(5): 949~953
-
10[10]Donovan G C, Geronimo J S, Hardin D P. Compactly supported, piecewise affine scaling functions on triangulations. Constr Approx, 2000, 16:201 ~219
-
1邵良峰,王国胜.一类二阶振动矩阵方程的求解[J].科学技术与工程,2010,10(1):12-16.
-
2田春红.一类具有反馈控制参数的时变分岔[J].郑州大学学报(理学版),2007,39(3):36-39. 被引量:3
-
3王振国,洪成杓.关于二维正交小波基[J].大庆石油学院学报,1997,21(1):98-101.
-
4倪加明,胡欢.一种基于RS码的测量矩阵构造方法[J].通信技术,2016,49(9):1139-1143.
-
5李志伟,冯象初,李一亮.基于张量扩散的图像恢复[J].计算机工程与应用,2007,43(23):56-57.
-
6喻海元,舒适,朱少茗.〈I〉型三角剖分下非张量积连续小波基的构造[J].高等学校计算数学学报,2002,24(1):37-44. 被引量:1
-
7李超,王源昌,孙锐.最优控制问题参数化研究—基于勒让德正交多项式逼近[J].数学的实践与认识,2014,44(4):251-260. 被引量:3
-
8田春红.具有控制参数的Duffing方程的时变分岔[J].科学技术与工程,2007,7(18):4687-4689.
-
9邱翔,王珺.封装堆叠的温度场分析和参数研究[J].半导体技术,2012,37(10):799-803.
-
10Yongyi YAN,Zengqiang CHEN,Zhongxin LIU.Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition[J].Frontiers of Computer Science,2014,8(6):948-957. 被引量:10